Assessment of Intracellular GTP Levels Using Genetically Encoded Fluorescent Sensors.

Methods Mol Biol

Department of Biomedical Engineering and Department of Pathology, Duke University Pratt School of Engineering and School of Medicine, Durham, NC, USA.

Published: March 2022

Changes in intracellular GTP levels, even incremental ones, profoundly affect the activity of several GTP-binding proteins ultimately resulting in alteration of several basal cellular phenotypes including cell motility, invasion, and tumorigenesis. However, until recently, no tools were available for GTP quantification in live cells. Therefore, in the current chapter, we describe the methodology for the quantitative assessment of spatiotemporal changes in GTP levels in the cells using genetically encoded fluorescent ratiometric GTP sensors termed GEVALs for GTP evaluators.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1811-0_10DOI Listing

Publication Analysis

Top Keywords

gtp levels
12
intracellular gtp
8
genetically encoded
8
encoded fluorescent
8
gtp
6
assessment intracellular
4
levels genetically
4
fluorescent sensors
4
sensors changes
4
changes intracellular
4

Similar Publications

Objective: To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/ pathway.

Methods: After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group.

View Article and Find Full Text PDF

Derivation and Characterization of Isogenic Mutant and Control Human Pluripotent Stem Cell Lines.

Cells

January 2025

Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion.

View Article and Find Full Text PDF

Structural characteization and anti-colorectal cancer activity of a fucogalactan purified from Ganoderma tsugae.

Carbohydr Polym

March 2025

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection and Mycology, Jilin Agricultural University, Changchun 130118, China. Electronic address:

Ganoderma tsugae, a traditional medicinal mushroom, exhibits anti-tumor properties; however, the effects of its polysaccharide on anti-colorectal cancer remain undetermined. Herein, a fucogalactan of Ganoderma tsugae (GTP-a2) was isolated and purified from its fruiting body. The molecular weight of GTP-a2 is 7.

View Article and Find Full Text PDF

Background: Uncontrolled severe eosinophilic chronic rhinosinusitis (eCRS) is associated with elevated levels of Th2 cells and raised immunoglobulin concentrations in nasal polyp tissue. eCRS is characterized by high eosinophilic infiltration and type 2 inflammation. Gαi1/3 proteins participate in allergic inflammation by regulating immune cells.

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATLL) is a type of blood cancer related to human T-cell lymphotropic virus type 1 (HTLV-1). The principal aim of this study was to investigate cellular processes related to innate immune response, intracellular protein transport, and translational initiation regulation in individuals afflicted with ATLL and Acute lymphoblastic leukemia (ALL). Whole blood samples and peripheral blood mononuclear cells were collected from 10 viral ATLL patients and 10 ALL subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!