The impact of PM on epithelial cells is a pivotal process leading to many lung pathological changes and pulmonary diseases. In addition to PM direct interaction with epithelia, macrophages that engulf PM may also influence the function of epithelial cells. However, among the toxic researches of PM, there is a lack of evaluation of direct or indirect exposure model on human bronchial epithelial cell against PM. In this present research, PM-exposed human bronchial epithelial cell line (BEAS-2B) serves as the direct interaction model. By contrast, a PM-stimulated co-culture model of macrophages and epithelial cells based on the transwell system was adopted as indirect stimulation model. By comparing these two models of interaction, we examined the viability of BEAS-2B and mRNA/protein expression profile of oxidative stress and inflammatory response-related transcription factors Nrf2, NF-kB, and according inflammatory indicators such as IL-1, IL-6, and IL-8, with a view to evaluating the effects of different interaction models of PM on epithelial cell damage in vitro. Our results indicated that under the same doses, the direct stimulation model of PM could inhibit the viability of BEAS-2B. Furthermore, the indirect stimulation model strengthen inflammation response of epithelia under the higher concentration of PM and induce epithelia to undergo EMT under the lower concentration of PM. Overall, we have found that macrophage involvement may protect epithelia from PM cytotoxic effect, while it strengthens the inflammation response and induce epithelia to undergo EMT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-18324-2 | DOI Listing |
Geroscience
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
Depto de Biologia Geral, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
Caterpillars of the genus Spodoptera are the main pests in soybean and cotton crops and Spodoptera cosmioides causes more severe losses than other caterpillars in these agricultural crops. However, there are few recommended insecticides for controlling this pest. Lambda-cyhalothrin is a pyrethroid used to control a wide spectrum of arthropods including lepidopterans.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Egypt.
Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!