Purpose: The present narrative review attempts to provide an overview on the use of microperimetry or fundus-driven perimetry in glaucoma, considering the clinical use, the different strategies and limits compared to standard automated perimetry.

Methods: An electronic database (PubMed and Medline) search was performed of articles of any type published in the English language between 1998 and 2020 with a combination of the following terms: microperimetry, glaucoma, primary open-angle chronic glaucoma, visual field, Humphrey visual field, fundus automated perimetry.

Results: All the original articles, case reports, and short series analyzed were included in the present review, offering an excursus on the strengths and limitations characterizing the use of microperimetry in glaucomatous patients. The characteristics of a recently introduced fundus-driven perimetry Compass (CMP; Centervue, Padua, Italy) were also included.

Conclusion: Although there remain several contradictions regarding routine use of microperimetry and the restricted research on this topic limits our ability to draw firm conclusions, microperimetry may be preferable in cases of localized retinal nerve fiber layer defects in patients with primary open-angle glaucoma and normal visual field. However, standard automated perimetry remains the gold standard for monitoring glaucoma, especially in patients with diffuse retinal nerve fiber layer impairment and visual field defects. The newly introduced Compass device can potentially provide a more accurate structural-functional evaluation than standard automated perimetry and can therefore produce superior testing reliability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10792-021-02203-3DOI Listing

Publication Analysis

Top Keywords

visual field
16
standard automated
12
microperimetry glaucoma
8
fundus-driven perimetry
8
primary open-angle
8
retinal nerve
8
nerve fiber
8
fiber layer
8
automated perimetry
8
microperimetry
6

Similar Publications

Vision loss affects more than 7 million Americans and impacts quality of life, independence, social functioning, and overall health. Common and dangerous conditions causing sudden vision loss include acute angle-closure glaucoma, retinal detachment, retinal artery occlusion, giant cell arteritis, and optic neuritis. Acute angle-closure glaucoma features ocular pain, headache, and nausea; treatment includes pilocarpine eye drops, oral or intravenous acetazolamide, and intravenous mannitol.

View Article and Find Full Text PDF

Purpose: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glaucoma as Mills criteria using only the pattern deviation (PD) plots. The DL model results were compared with a machine learning (ML) classifier trained on conventional VF parameters.

Methods: A total of 265 PD plots and 265 numerical datasets of Humphrey 24-2 VF images were collected from 119 normal and 146 glaucomatous eyes to train the DL models to classify the images into four groups: normal, early glaucoma, moderate glaucoma, and advanced glaucoma.

View Article and Find Full Text PDF

Like other pattern recognition disciplines, forensic handwriting examination relies on various human factors. Expert opinions in the field are based on visual analysis and comparison, and the evaluation of findings is generally conducted without reference to tabulated data. This high level of subjectivity may contribute to bias and error in the examination process.

View Article and Find Full Text PDF

Purpose: To investigate the repeatability of optical coherence tomography angiography (OCTA) parameters in participants with different severities of glaucoma.

Methods: Subjects with open-angle glaucoma were enrolled prospectively and categorised into mild (mean deviation [MD] of 24-2 visual field test ≥ -6 dB), moderate to advanced (-6 > MD ≥ -20 dB) and severe glaucoma groups (MD < -20 dB). OCTA was performed three times within a single visit to obtain superficial and deep macular vessel density (VD) and peripapillary vessel and capillary density.

View Article and Find Full Text PDF

Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control.

Mikrochim Acta

January 2025

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.

The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!