Electron applicator cutouts for radiation therapy electron beam shaping are typically cast from Low Melting Point Alloys (LMPA), such as cerrobend. In this work, we describe the Monte Carlo modelling of novel 3D printed cutouts based on tungsten carbide powder and the resulting dose profiles subject to Elekta Agility electron beams. Cerrobend cutouts were also modelled using the Monte Carlo code EGSnrc. Cerrobend and tungsten carbide cutouts were found to have the same dose profiles within model variance. Computed profiles and percentage depth dose (PDDs) curves of the Elekta Agility accelerator model using standard cutouts in water were found to agree with water tank measurements using gamma criteria of 2%/2mm. The Monte Carlo computed dose profiles of the tungsten carbide cutouts in a polystyrene phantom were also found to agree with liquid-filled ionization chamber array measurements using gamma criteria of 2%/2mm. We conclude that the tungsten carbide cutouts are clinically equivalent to LMPA cutouts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/abcb13 | DOI Listing |
Langmuir
January 2025
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
Lithium-sulfur (Li-S) batteries hold significant promise due to high energy density, cost-effectiveness, and ecological sustainability, but their practical applications are constrained by suboptimal electrochemical performance and the detrimental shuttle effect. Herein, a porous, sandwich-structured composite was developed to function as a freestanding cathode designed for Li-S batteries without aluminum foil. Porous carbon nanofibers (PCNF) were employed as the conductive matrix for sulfur, with tungsten carbide (WC) being incorporated to furnish abundant active sites for polysulfide adsorption.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi 030051, PR China.
Energetic composite systems with uniform particle distributions are of considerable interest, but sedimentation is a persisting challenge. Tungsten carbide (WC, density: 15.36 g/cm) particles are promising cemented carbide particles owing to their desirable properties.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Center of Excellence "VERITAS", D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk 070004, Kazakhstan.
This paper reviews recent advances in the synthesis of cobalt-free high-strength tungsten carbide (WC) composites as sustainable alternatives to conventional WC-Co composites. Due to the high cost of cobalt, limited supply, and environmental concerns, researchers are exploring nickel, iron, ceramic binders, and nanocomposites to obtain similar or superior mechanical properties. Various synthesis methods such as powder metallurgy, encapsulation, 3D printing, and spark plasma sintering (SPS) are discussed, with SPS standing out for its effectiveness in densifying and preventing WC grain growth.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (WC) is one of the most promising non-noble-metal-based catalysts with low cost, replicable catalytic performance, and durability. However, the preparation access to scalable production of WC catalysts is inevitable.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Engineering Department, Public University of Navarre, Campus de Arrosadía s/n, 31006 Pamplona, Spain.
Cobalt-bonded tungsten carbide (WC-Co) is widely used in heavy-duty machining applications due to its exceptional hardness and wear resistance, and it is increasingly being adopted in industries such as aerospace and the automotive sector, among others. Its superior mechanical properties make it difficult to machine with conventional methods such as turning or milling. Electrical Discharge Machining (EDM) has emerged as an efficient alternative, as it allows for the machining of hard materials to be carried out without direct contact between the tool and the workpiece, provided that the material has sufficient electrical conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!