Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mutations leading to haploinsufficiency in SCN5A, the gene encoding the cardiac sodium channel Na1.5 α-subunit, are involved in life-threatening cardiac disorders. Using CRISPR/Cas9-mediated genome edition, we generated here a human induced-pluripotent stem cell (hiPSC) line carrying a heterozygous mutation in exon 2 of SCN5A, which leads to apparition of a premature stop codon. SCN5A-clone 5 line maintained normal karyotype, morphology and pluripotency and differentiated into three germ layers. Cardiomyocytes derived from these hiPSCs would be a useful model for investigating channelopathies related to SCN5A heterozygous deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2022.102680 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!