AI Article Synopsis

  • Dengue virus, a major public health concern, lacks an antiviral treatment, highlighting the need for effective anti-DENV medications.
  • Researchers developed and tested 28 indoline-based compounds, discovering 13 active against DENV and summarizing their structure-activity relationship (SAR).
  • The study identified the RdRp of DENV NS5 as a key target for these compounds, specifically noting that compound 15 effectively acts on the viral life cycle, and future research will aim to enhance inhibitor potency and understand their mechanisms better.

Article Abstract

Dengue virus, belonging to a genus Flavivirus, caused public health problem in recent years. One controversial vaccine of DENV was approved and there is no antiviral for the clinic treatment of DENV, therefore, efficient antivirals to DENV are of great medical significance. In this study, we conducted the design, synthesis, cell-based and target-based activity evaluation of 28 compounds based on indoline structural skeleton against DENV infection. Among them, 13 active compounds against DENV infection were discovered and their structure-activity relationship (SAR) was summarized. In this study, indoline carbohydrazine has derived more active compounds than indoline carboamide. It is discovered that TBS group exhibits a good pharmacophore to enhance anti-DENV activity. Further exploration indicated that post-treatment acts as effective time of addition and compound 15 targeting the post-entry stages of DENV2 viral life cycle. SPR imaging results support there are strong interaction of 13 and 15 with RdRp and compounds 13 and 15 reduce RdRp enzymatic activity, revealing that RdRp of DENV NS5 is the drug target for these series of compounds. Molecular docking deciphered the relationship of the structural feature with the putative binding mode by 13 and 15 with RdRp domain of DENV2 NS5 by hydrogen bonds and hydrophobic interactions to establish the fitted low energy conformation. Future studies will focus on designing more potent inhibitors for the treatment and prevention of dengue virus replication and infection, and understanding the more profound underlying structural features of inhibitors and drug action of the mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2022.105639DOI Listing

Publication Analysis

Top Keywords

design synthesis
8
replication infection
8
dengue virus
8
denv infection
8
active compounds
8
denv
7
compounds
5
synthesis discovery
4
discovery sar
4
sar fused
4

Similar Publications

Background: Medication safety is crucial in clinical care. Although many hospitals have implemented prospective prescription review systems to manage medication use, the impact of these systems on pediatric patients is not yet fully understood.

Objectives: We explore the characteristics and economic impacts of pediatric prospective prescription review and identify factors influencing intervention success rates.

View Article and Find Full Text PDF

Introduction: While the fact that visual stimuli synthesized by Artificial Neural Networks (ANN) may evoke emotional reactions is documented, the precise mechanisms that connect the strength and type of such reactions with the ways of how ANNs are used to synthesize visual stimuli are yet to be discovered. Understanding these mechanisms allows for designing methods that synthesize images attenuating or enhancing selected emotional states, which may provide unobtrusive and widely-applicable treatment of mental dysfunctions and disorders.

Methods: The Convolutional Neural Network (CNN), a type of ANN used in computer vision tasks which models the ways humans solve visual tasks, was applied to synthesize ("dream" or "hallucinate") images with no semantic content to maximize activations of neurons in precisely-selected layers in the CNN.

View Article and Find Full Text PDF

Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.

View Article and Find Full Text PDF

Phospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations.

View Article and Find Full Text PDF

Crystallinity, stability, and complexity are significant factors to consider in the design and development of covalent organic frameworks (COFs). Among various building blocks used, 1,3,5-triformylphloroglucinol (Tp) is notable for enhancing both crystallinity and structural stability in COFs. Tp facilitates the formation of β-ketoenamine-linked COFs through keto-enol tautomerism when reacted with aromatic amines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!