The oxidation products and metabolic pathways of five Citrus flavonoids were studied by online electrochemical/quadrupole time-of-flight mass spectrometry (EC/Q-TOF/MS). The simulated oxidation metabolism of target compounds in phase I and phase Ⅱ was carried out at boron-doped diamond (BDD) working electrode. The results obtained by EC-MS were compared with the conventional metabolism of rats and humans reported in previous literatures. In addition, the method of incubating the target compounds with rat liver microsomes in vitro was established, the target compounds and their metabolites were analyzed by high performance liquid chromatography coupled mass spectrometry. The structures of the metabolites were determined by accurate mass measurements and previous in vivo metabolite results. The results showed that the electrochemical oxidation metabolites were consistent with the results of in vitro incubation of liver microsomes, and also with the results reported in other literatures. As a consequence, EC/Q-TOF/MS is a promising and effective tool for studying metabolic transformation of different complex food components.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.132202DOI Listing

Publication Analysis

Top Keywords

target compounds
12
phase Ⅱ
8
citrus flavonoids
8
mass spectrometry
8
liver microsomes
8
phase
4
phase Ⅰ
4
Ⅰ phase
4
Ⅱ metabolic
4
metabolic studies
4

Similar Publications

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.

View Article and Find Full Text PDF

The translational potential of epigenetic modulatory bioactive phytochemicals as adjuvant therapy against cancer.

Int Rev Cell Mol Biol

January 2025

Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

In preclinical studies, bioactive phytochemicals have shown enormous potential therapeutic efficacy against various human malignancies. These natural compounds have been shown to possess an inherent potential to alter the molecular signaling pathways and epigenetic modulatory activity involved in multiple physiological functions. Recently, epigenetic therapy has emerged as an important therapeutic modality due to the reversible nature of epigenetic alterations.

View Article and Find Full Text PDF

Analysis of multi-class unregulated organic compounds in soil and biosolids using LC-MS/MS.

Environ Pollut

January 2025

Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana 47907, USA.

Numerous unregulated organic compounds (UOCs) including pharmaceuticals, opioids, and personal care products (PCPs) end up in wastewater. UOC presence in biosolids (a wastewater treatment byproduct), which are applied to soil for different reasons raises environmental and health risk concerns. In this study, two multi-class extraction methods were developed and validated to target 111 UOCs from 8 different major families simultaneously in biosolids and biosolids-impacted soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!