Phosphopeptide enrichment using Phos-tag technology reveals functional phosphorylation of the nucleocapsid protein of SARS-CoV-2.

J Proteomics

Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan. Electronic address:

Published: March 2022

Phosphorylation of viral proteins serves as a regulatory mechanism during the intracellular life cycle of infected viruses. There is therefore a pressing need to develop a method to efficiently purify and enrich phosphopeptides derived from viral particles in biological samples. In this study, we utilized Phos-tag technology to analyze the functional phosphorylation of the nucleocapsid protein (N protein; NP) of severe respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral particles were collected from culture supernatants of SARS-CoV-2-infected VeroE6/TMPRSS2 cells by ultracentrifugation, and phosphopeptides were purified by Phos-tag magnetic beads for LC-MS/MS analysis. Analysis revealed that NP was reproducibly phosphorylated at serine 79 (Ser79). Multiple sequence alignment and phylogenetic analysis showed that the Ser79 was a distinct phospho-acceptor site in SARS-CoV-2 but not in other beta-coronaviruses. We also found that the prolyl-isomerase Pin1 bound to the phosphorylated Ser79 in NP and positively regulated the production of viral particles. These results suggest that SARS-CoV-2 may have acquired the potent virus-host interaction during its evolution mediated by viral protein phosphorylation. Moreover, Phos-tag technology can provide a useful means for analyzing the functional phosphorylation of viral proteins. SIGNIFICANCE: In this study, we aimed to investigate the functional phosphorylation of SARS-CoV-2 NP. For this purpose, we used Phos-tag technology to purify and enrich virus-derived phosphopeptides with high selectivity and reproducibility. This method can be particularly useful in analyzing viral phosphopeptides from cell culture supernatants that often contain high concentrations of fetal bovine serum and supplements. We newly identified an NP phosphorylation site at Ser79, which is important for Pin1 binding. Furthermore, we showed that the interaction between Pin1 and phosphorylated NP could enhance viral replication in a cell culture model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800104PMC
http://dx.doi.org/10.1016/j.jprot.2022.104501DOI Listing

Publication Analysis

Top Keywords

phos-tag technology
16
functional phosphorylation
16
viral particles
12
phosphorylation nucleocapsid
8
nucleocapsid protein
8
viral
8
phosphorylation viral
8
viral proteins
8
purify enrich
8
culture supernatants
8

Similar Publications

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Background: Lymph node metastasis (LNM) is the primary mode of metastasis in gastric cancer (GC). However, the precise mechanisms underlying this process remain elusive. Tumor cells necessitate lipid metabolic reprogramming to facilitate metastasis, yet the role of lipoprotein lipase (LPL), a pivotal enzyme involved in exogenous lipid uptake, remains uncertain in tumor metastasis.

View Article and Find Full Text PDF

Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs ( ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence complementation (BiFC). The results revealed that both GmACBP3.

View Article and Find Full Text PDF

Background: It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities.

Methods: HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis.

View Article and Find Full Text PDF

Biosynthesis and Genetic Encoding of Non-hydrolyzable Phosphoserine into Recombinant Proteins in .

Bio Protoc

November 2023

Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR, USA.

While site-specific translational encoding of phosphoserine (pSer) into proteins in via genetic code expansion (GCE) technologies has transformed our ability to study phospho-protein structure and function, recombinant phospho-proteins can be dephosphorylated during expression/purification, and their exposure to cellular-like environments such as cell lysates results in rapid reversion back to the non-phosphorylated form. To help overcome these challenges, we developed an efficient and scalable GCE expression system enabling site-specific incorporation of a non-hydrolyzable phosphoserine (nhpSer) mimic into proteins of interest. This nhpSer mimic, with the γ-oxygen of phosphoserine replaced by a methylene (CH) group, is impervious to hydrolysis and recapitulates phosphoserine function even when phosphomimetics aspartate and glutamate do not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!