Use of aircraft in ocean alkalinity enhancement.

Sci Total Environ

Politecnico di Milano, Dipartimento di Ingegneria Civile ed Ambientale, Via Golgi 39, 20133 Milano, Italy. Electronic address:

Published: May 2022

Ocean Alkalinity Enhancement (OAE) is a proposed Negative Emissions Technology (NET) to remove atmospheric CO through the dispersion of alkaline materials (e.g.: calcium hydroxide, slaked lime, SL) into seawater, simultaneously counteracting ocean acidification. This study considers aircraft discharge of SL and its consequent dry deposition, extending to the marine environment a technique used in freshwater. A feasibility analysis assesses potential, costs, benefits, and disadvantages, considering scenarios with different assumptions on aircraft size, discharge height and duration, and wind conditions. Due to the small size of SL particles (median diameter 9 μm), the dispersion from aircraft is highly enhanced by wind drift; the smallest SL particles may drift thousands of kilometres, especially if discharged from elevated altitudes. This could pose problems related to powders particles settling on remote lands. Although calcium hydroxide maximum concentration into water (from 0.01 to 82 mg L) is for almost all the scenarios lower than the most stringent threshold for the ecosystem impacts on a 96-h exposure, the ecologically sensitive sea surface microlayer (SML) should be considered in detail. The high CO emissions of the Landing to Take-Off Cycle (LTO) of the aircraft and their limited payload lead to a significant CO penalty, ranging in analysed scenarios between 28% and 77% of the CO removal potential; very fast discharge could reduce the penalty to 11% - 32%. Preliminary cost analysis shows that the cost of the SL discharge through aircraft is high, between € 30 and € 1846 per ton of CO removed (neglecting the lime cost), substantially higher than the cost for discharge by surface vessels resulting from previous studies, which restricts the practical use of this strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153484DOI Listing

Publication Analysis

Top Keywords

ocean alkalinity
8
alkalinity enhancement
8
calcium hydroxide
8
cost discharge
8
aircraft
6
discharge
5
aircraft ocean
4
enhancement ocean
4
enhancement oae
4
oae proposed
4

Similar Publications

Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L.

View Article and Find Full Text PDF

Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.

View Article and Find Full Text PDF

This case study of Kongsfjorden, western coastal Svalbard, provides insights on how freshwater runoff from marine- and land-terminating glaciers influences the biogeochemical cycles and distribution patterns of carbon, nutrients, and trace elements in an Arctic fjord system. We collected samples from the water column at stations along the fjord axis and proglacial river catchments, and analyzed concentrations of dissolved trace elements, together with dissolved nutrients, as well as alkalinity and dissolved inorganic carbon. Statistical tools were applied to identify and quantify biogeochemical processes within the fjord that govern the constituent distributions.

View Article and Find Full Text PDF

Luteolin (Lut) and apigenin (Apn), flavones present in various edible plants, exhibit diverse antioxidant and pharmacological activities but have limited in vivo efficacy due to low water solubility and poor bioavailability. Here, we generated luteolin and apigenin monophosphate derivatives (LutPs and ApnPs) individually via microbial biotransformation. We then characterized their physicochemical properties and evaluated their in vitro and in vivo pharmacokinetics and bioavailability.

View Article and Find Full Text PDF

As a transitional zone where rivers meet the sea, estuaries are influenced by river transport and ocean tides, resulting in complex variations in parameters such as organic matter content, pH, and sediment salinity. This paper primarily explores the vertical migration patterns of polychlorinated biphenyls (PCBs) under complex conditions, focusing on the soil sediments in the Dagu River estuary area. We designed an indoor soil column leaching experiment to investigate how soil organic matter content, pH, and salinity affect the vertical migration of PCBs in soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!