Background: Tuberculosis currently stands as the second leading cause of deaths worldwide due to single infectious agent after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The current challenges of drug resistance in tuberculosis highlight an urgent need to develop newer anti-mycobacterial compounds. In the present study, we report the serendipitous discovery of a bacterial laboratory contaminant (LC-1) exhibiting a zone of growth inhibition on an agar plate seeded with Mycobacterium tuberculosis.
Results: We utilized microbiological, biochemical and biophysical approaches to characterize LC-1 and anti-mycobacterial compound(s) in its secretome. Based on 16S rRNA sequencing and BIOLOG analysis, LC-1 was identified as Staphylococcus hominis, a human bacterial commensal. Anti-mycobacterial activity was initially found in 30 kDa retentate that was obtained by ultrafiltration of culture filtrate (CF). SDS-PAGE analysis of peak fractions obtained by size exclusion chromatography of 30 kDa retentate confirmed the presence of high molecular weight (≥ 30 kDa) proteins. Peak fraction-1 (F-1) exhibited inhibitory activity against M. bovis BCG, but not against M. smegmatis, E. coli and S. aureus. The active fraction F-1 was inactivated by treatment with Proteinase K and α-chymotrypsin. However, it retained its anti-mycobacterial activity over a wide range of heat and pH treatment. The anti-mycobacterial activity of F-1 was found to be maintained even after a long storage (~12 months) at - 20 °C. Mass spectrometry analysis revealed that the identified peptide masses do not match with any previously known bacteriocins.
Conclusions: The present study highlights the anti-mycobacterial activity of high molecular weight protein(s) present in culture filtrate of LC-1, which may be tested further to target M. tuberculosis. The heat and pH stability of these proteins add to their characteristics as therapeutic proteins and may contribute to their long shelf life. LC-1 being a human commensal can be tested in future for its potential as a probiotic to treat tuberculosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799974 | PMC |
http://dx.doi.org/10.1186/s12934-022-01743-2 | DOI Listing |
J Clin Invest
December 2024
Department of Molecular Immunology, Research Institute for Microbial Diseas, Osaka University, Suita, Japan.
Mycobacterium tuberculosis causes human tuberculosis. As mycobacteria are protected by thick lipid cell wall, humans have developed immune responses against diverse mycobacterial lipids. Most of these immunostimulatory lipids are known as adjuvants acting through innate immune receptors, such as C-type lectin receptors.
View Article and Find Full Text PDFMicroorganisms
October 2024
Nanobios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
Antibiotics (Basel)
October 2024
Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovena 0727, South Africa.
Tuberculosis is a worldwide prevalent and recurring disease that contributes significantly to high mortality rates. This study aimed to investigate the antioxidant, anti-mycobacterial, and antibiofilm activities of acetone crude extract. The crude acetone extract was fractionated using column chromatography and characterized by liquid chromatography-mass spectroscopy (LC-MS).
View Article and Find Full Text PDFMicrobiol Res
January 2025
Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India. Electronic address:
Chem Biodivers
November 2024
Department of chemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
A series of Triclosan-based hybrids and their Schiff base derivatives with isoniazid were designed through in silico modeling and synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. These compounds were then evaluated against both Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mab). However, none of the synthesized hybrids exhibited significant growth inhibition, with minimum inhibitory concentration (MIC) values consistently exceeding 100 µg/mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!