Comprehensive two-dimensional liquid chromatography (LC × LC) is an attractive separation technique that allows achieving high peak capacities and information on chemical correlations. Unfortunately, its application in industrial practice is still not widespread due to limiting factors such as complex method development, tedious method optimization and solvent-incompatibility (such as solvent-strength mismatch or immiscibility experienced during fraction transfer). A severe case of solvent-incompatibility is encountered in the comprehensive coupling of normal-phase LC and reversed-phase LC (NPLC × RPLC). NPLC × RPLC is considered a desirable LC × LC system, especially for the characterization of synthetic polymers, due to the high orthogonality of the two retention mechanisms. However, its experimental realization often suffers from solvent-injection effects in the RPLC dimension, such as peak-deformation, peak-splitting, or even unretained elution ("breakthrough") of sample components. Such a decrease in performance or loss of retention is highly dependent on the types of solvents used. To explore the boundaries of solvent compatibility, we applied large-volume injections (LVI) of reference analytes (e.g. alkyl benzenes; ethoxylate and propoxylate polymers) dissolved in water-immiscible sample solvents, such as dichloromethane, n-hexane, and isooctane in fast water-based gradient RPLC separations (using methanol or acetonitrile as eluent). It was found that, when using highly aqueous initial gradient conditions, hydrophobic sample diluents were retained and eluted during the applied gradient. Depending on the relative retention of the retained diluent and the sample analytes, good chromatograms for LVI of immiscible solvents were obtained, comparable with injections under ideal conditions. The conclusions from injection experiments in aqueous RPLC were verified by coupling an NPLC system with a gradient from isooctane to tetrahydrofuran and an RPLC system with a gradient from water to acetonitrile in an online comprehensive NPLC × RPLC separation of a mixture of propoxylate polymers. The separation provided separation of the polymers based on their number of hydroxyl end-groups (NPLC) and oligomer chain-length (RPLC), without suffering from significant band-broadening effects due to solvent-mismatch upon injection in the second-dimension RPLC system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.462818DOI Listing

Publication Analysis

Top Keywords

effects solvent-mismatch
8
liquid chromatography
8
propoxylate polymers
8
system gradient
8
rplc system
8
rplc
6
gradient
5
investigation effects
4
solvent-mismatch immiscibility
4
immiscibility normal-phase × aqueous
4

Similar Publications

Evaluating the potential of hydrophilic interaction liquid chromatography for collagen peptide mapping analysis.

J Chromatogr A

December 2024

Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, School of Pharmaceutical Sciences, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, Geneva, Switzerland. Electronic address:

This study presents a systematic approach for developing an innovative hydrophilic interaction liquid chromatography (HILIC) method for collagen peptide mapping analysis. The predominant post-translational modification (PTM) of collagen, proline hydroxylation, introduces polar hydroxyl groups throughout the collagen sequence, making HILIC a promising alternative to classical reversed-phase liquid chromatography (RPLC) approaches. This study employs sixteen model peptides, selected from in silico predicted tryptic peptides with zero missed cleavages and representing diverse physicochemical properties and structural motifs of collagen.

View Article and Find Full Text PDF

Accurate monitoring of pesticide residues at minimal concentrations is imperative for adherence to stringent regulatory standards in numerous countries. This study presents an innovative methodology employing comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry (LC × LC-HRMS). The approach ensures high sensitivity and selectivity in detecting targeted compounds.

View Article and Find Full Text PDF

In liquid chromatography (LC), discrepancies in liquid properties such as elution strength and viscosity lead to a mismatch between the sample diluent and mobile phase. This mismatch can result in peak deformation, including peak splitting or even breakthrough, particularly when large sample volumes are injected. The formation of a T-junction between sample solution and mobile phase flow stream, a technique previously used in supercritical fluid chromatography, is the key enabler of feed injection in LC.

View Article and Find Full Text PDF

Method development in online comprehensive two-dimensional liquid chromatography (LC × LC) requires the selection of a large number of experimental parameters. The complexity of this process has led to several computer-based LC × LC optimization algorithms being developed to facilitate LC × LC method development. One particularly relevant challenge for predictive optimization software is to accurately model the effect of second dimension (D) injection band broadening under sample solvent mismatch and/or sample volume overload conditions.

View Article and Find Full Text PDF

Online comprehensive two-dimensional liquid chromatography (online LC x LC) has become increasingly popular. Among the different chromatographic modes that can be combined, hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) are particularly interesting because they offer a high degree of orthogonality. However, this combination remains complex due to the incompatibility of the solvents in the two dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!