Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimony (Sb) accumulation in soil poses great potential risk to ecological environment, and its mobilization, transformation and bioavailability are controlled by its fractions and species. Hence, it is important to develop functional materials with both adsorption and oxidation that achieve detoxification and control the mobilization of Sb. In this study, the synthesized zirconium‑manganese oxide (ZrMn) could extremely promoted the transformation of antimonite [Sb(III)] to antimonate [Sb(V)], induced the bioavailable Sb shift to well-crystallized (hydr)oxides of Mn and residual fractions, and further reduced mobility and bioavailability Sb in soil. The sorption of ZrMn to Sb(III) and antimonate Sb(V) were affected by interfering ions, and to Sb(III) was a heterogeneous adsorption process. Spectroscopic characterization of XPS and FTIR suggested exchange between the hydroxyl groups and Sb was crucial in its retain and forming an electronegative inner-sphere mononuclear or binuclear bridging compound. The oxidation induced the transformation of Mn species in ZrMn, generated Mn(II) and Mn(III) exposing more reactive sites conducive to oxidation and adsorption, thus Mn oxides has a higher adsorption capacity for Sb(III). However, the Zr oxides of ZrMn presented adsorption rather than oxidation. The application of ZrMn could realize the dual effect of Sb oxidation detoxification and adsorption immobilization in soil, which provided references for Sb contaminated soil remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.153435 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!