Properdin, the only known positive regulator of the complement system, stabilizes the C3 convertase, thereby increasing its half-life. In contrast to most other complement factors, properdin is mainly produced extrahepatically by myeloid cells. Recent data suggest a role for properdin as a pattern recognition molecule. Here, we confirmed previous findings of properdin binding to different necrotic cells including Jurkat T cells. Binding can occur independent of C3, as demonstrated by HAP-1 C3 KO cells, excluding a role for endogenous C3. In view of the cellular source of properdin, interaction with myeloid cells was examined. Properdin bound to the surface of viable monocyte-derived pro- and anti-inflammatory macrophages, but not to DCs. Binding was demonstrated for purified properdin as well as fractionated P2, P3, and P4 properdin oligomers. Binding contributed to local complement activation as determined by C3 and C5b-9 deposition on the cell surfaces and seems a prerequisite for alternative pathway activation. Interaction of properdin with cell surfaces could be inhibited with the tick protein Salp20 and by different polysaccharides, depending on sulfation and chain length. These data identify properdin as a factor interacting with different cell surfaces, being either dead or alive, contributing to the local stimulation of complement activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303752PMC
http://dx.doi.org/10.1002/eji.202149259DOI Listing

Publication Analysis

Top Keywords

cell surfaces
12
properdin
10
properdin binding
8
alternative pathway
8
pathway activation
8
surface viable
8
necrotic cells
8
myeloid cells
8
complement activation
8
cells
6

Similar Publications

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

VZV IE4 downregulates cellular surface MHC-I via sequestering it to the Golgi complex.

Cell Mol Life Sci

December 2024

Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.

Varicella-zoster virus (VZV) infection downregulates surface major histocompatibility complex class I (MHC-I) expression and retains MHC-I in the Golgi complex of infected cells. However, the underlying mechanism is not fully understood. The VZV IE4 protein is a multifunctional protein that is essential for VZV infection.

View Article and Find Full Text PDF

Rapid and accurate determination of target proteins in cells provide essential diagnostic information for early detection of diseases, evaluation of drug responses, and the study of pathophysiological mechanisms. Traditional Western blotting method has been used for the determination, but it is complex, time-consuming, and semi-quantitative. Here, a tapered seven-core fiber (TSCF) biosensor was designed and fabricated.

View Article and Find Full Text PDF

First Report of Causing Leaf Blight on in China.

Plant Dis

December 2024

Chiang Mai University, Biology, Room 2410/00, SCB2 building, Faculty of Science, Chiang Mai University,239 Huay Kaew Road, Suthep, Muang, Chiang Mai Province, Thailand, 50200;

Peacock plant (Calathea orbifolia (Linden) H.A.Kenn.

View Article and Find Full Text PDF

First Report of Leaf Spot Caused by on Invasive Weed in Korea.

Plant Dis

December 2024

Korea University, Environmental Science & Ecological Engineering, Seoul, Seoul, Korea (the Republic of), 02841;

Cerastium glomeratum Thuill., known as sticky mouse-ear chickweed, is native to Europe and has become naturalized in the wild on most continents. After its accidental introduction to Korea around the 1980s, it quickly became one of the dominant invasive weeds on the Korean peninsula and is now considered a significant threat to the Korean agroecosystem (Park et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!