Backgrounds: In the present study, a glycosylated soybean protein with glucose was prepared after pH treatment under different conditions (5.0, 6.0 7.0, 8.0, 9.0) and the conformation and emulsifying properties of soybean protein isolate (SPI) and soybean protein isolate-glucose (SPI-G) were investigated.

Results: The degree of grafting (37.11%) and browning (39.2%) of SPI-G conjugates were obtained at pH 9.0 (P < 0.05). The results of analysis of polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy and Endogenous fluorescence spectroscopy showed that the Maillard reaction between the SPI and glucose occurred and the natural rigid structure of test proteins was stretched and became looser, and thus the tertiary conformation was unfolding. Furthermore, the particle size of the all of samples was reduced under different pH conditions, indicating that pH treatment can increase the flexibility of SPI molecules. The proteins exhibited the best surface hydrophobicity, thermal stability and emulsifying activity (EA) of modified products when subjected to a pH treatment of 9.0, whereas they afforded the best emulsion stability (ES) at pH 8.0. There was a good correlation between the molecular flexibility and emulsifying properties of SPI-G [0.963 (F:EA) and 0.879 (F:ES)] (P < 0.05).

Conclusion: The present study shows that the structural and emulsification characteristics of natural SPI and SPI-G conjugates have been significantly enhanced via pH treatment and these results provide a theoretical guidance for the application of glycosylated SPI in the food industry. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11800DOI Listing

Publication Analysis

Top Keywords

soybean protein
16
emulsifying properties
8
properties soybean
8
protein isolate
8
structural emulsifying
4
soybean
4
protein
4
isolate glycated
4
glycated glucose
4
glucose based
4

Similar Publications

Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C plants), overexpression of three NPQ genes, e ( V DE), ( P sbS), and ( Z EP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions.

View Article and Find Full Text PDF

Aquaculture plays a critical role in global food security, with Nile tilapia () recognized for its adaptability and robust growth. However, traditional feeds, heavily reliant on fishmeal (FM) and soybean meal, face economic and environmental challenges. In response, black soldier fly larvae meal (BSFLM) has emerged as a promising, nutrient-dense alternative.

View Article and Find Full Text PDF

Understanding protein fermentation in the hindgut of pigs is essential due to its implications for health, and ileal digesta is commonly used to study this process . This study aimed to assess the feasibility of utilizing digested residues as a replacement for ileal digesta in evaluating the protein fermentation potential. residues from cottonseed meal, maize germ meal, peanut meal, rapeseed cake, rapeseed meal, soybean meal and sunflower meal were analysed using a modified gas production (GP) technique and curve fitting model to determine their fermentation dynamics and compare with the use of ileal digesta.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!