Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The surface of a biomedical implant can be a potential endogenous source of release of microparticles (MPs) and nanoparticles (NPs) into the biological environment. In addition, titanium particles from exogenous sources can enter the body through inhalation, ingestion, or dermal contact. The aim of this work was to evaluate the biological response of the lung, liver, and kidneys to acute exposure to titanium dioxide (TiO ). Male Wistar rats were intraperitoneally injected with a suspension of 45 μm or 5 nm TiO particles. One month post-exposure, titanium concentration was determined spectrometrically (ICP-MS) in plasma and target organs. Blood smears and organ tissue samples were examined histopathologically, and oxidative metabolism was analyzed (superoxide anion by nitro blue tetrazolium (NBT) test; superoxide dismutase (SOD) and catalase (CAT); lipid peroxidation; paraoxonase 1). Liver (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) and kidney (urea, creatinine) function was evaluated using serum biochemical markers. Microchemical and histological analysis revealed the presence of particles, though no structural alterations, in TiO -exposed groups. NBT test showed an increase in the percentage of reactive cells and antioxidant enzyme consumption in lung samples in the 45 μm and 5 nm TiO -exposed groups. Only the 5 nm particles caused a decrease in SOD and CAT activity in the liver. No changes in renal oxidative metabolism were observed in either of the TiO -exposed groups. Determination of serum biochemical markers and analysis of oxidative metabolism are not early bioindicators of tissue damage caused by TiO MPs and NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.35017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!