Detecting driver stress and hazard anticipation using real-time cardiac measurement: A simulator study.

Brain Behav

Laboratoire d'Etude des Mecanismes Cognitifs (EA 3082), University Lyon 2, Bron, France.

Published: February 2022

Objectives: In the context of growing interest in real-time driver stress detection systems, we question the value of using heart rate change over short time periods to detect driver stress and hazard anticipation.

Methods: To this end, we explored changes in heart rate and speed as well as perceived stress in 27 drivers in a driving simulator. Driver stress was triggered by using hazardous road events, while hazard anticipation was manipulated using three levels of hazard predictability: unpredictable (U), predictable (P), and predictable and familiar (PF).

Results: The main results indicate that using heart rate change (1) is a good indicator for detecting driver stress in real time, (2) provides a cardiac signature of hazard anticipation, and (3) was affected by perceived stress groups. Further investigation is needed to validate the lack of relationship between increased anticipation/predictability and strengthened cardiac signature.

Conclusions: These results support the use of heart rate change as an indicator of real-time driver stress and hazard anticipation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865166PMC
http://dx.doi.org/10.1002/brb3.2424DOI Listing

Publication Analysis

Top Keywords

driver stress
24
hazard anticipation
16
heart rate
16
stress hazard
12
rate change
12
detecting driver
8
stress
8
real-time driver
8
perceived stress
8
hazard
6

Similar Publications

Improving Renal Protection in Chronic Kidney Disease Associated with Type 2 Diabetes: The Role of Finerenone.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Internal Medicine, Division of Nephrology and Hypertension, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.

Chronic kidney disease (CKD) is a major complication of type 2 diabetes mellitus (T2D), which often leads to diabetic kidney disease (DKD). Traditional therapies, including renin- angiotensin-aldosterone system inhibitors and sodium-glucose cotransporter-2 inhibitors, are effective in slowing CKD progression. However, these approaches are insufficient to comprehensively inhibit mineralocorticoid receptor (MR) overactivation in the kidneys, which remains a significant driver of inflammation, fibrosis, and oxidative stress.

View Article and Find Full Text PDF

Background: Cows that develop metritis experience dysbiosis of their uterine microbiome, where opportunistic pathogens overtake uterine commensals. An effective immune response is critical for maintaining uterine health. Nonetheless, periparturient cows experience immune dysregulation, which seems to be intensified by prepartum over-condition.

View Article and Find Full Text PDF

Ubiquitin-specific peptidase 10 promotes renal interstitial fibrosis progression through deubiquitinating and stabilizing P53 protein.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China. Electronic address:

Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice.

View Article and Find Full Text PDF

Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol.

Ecotoxicol Environ Saf

January 2025

Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan,  Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea. Electronic address:

Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells.

View Article and Find Full Text PDF

Maternal effects have been shown to play influential roles in many evolutionary and ecological processes. However, understanding how environmental stimuli induce within-generation responses that transverse across generations remains elusive, particularly when attempting to segregate confounding effects from offspring genotypes. This review synthesizes literature regarding resource- and predation-driven maternal effects in the model system Daphnia, detailing how the maternal generation responds to the environmental stimuli and the maternal effects seen in the offspring generation(s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!