Imaging through diffuse media using multi-mode vortex beams and deep learning.

Sci Rep

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8441405, Beersheba, Israel.

Published: January 2022

Optical imaging through diffuse media is a challenging issue and has attracted applications in many fields such as biomedical imaging, non-destructive testing, and computer-assisted surgery. However, light interaction with diffuse media leads to multiple scattering of the photons in the angular and spatial domain, severely degrading the image reconstruction process. In this article, a novel method to image through diffuse media using multiple modes of vortex beams and a new deep learning network named "LGDiffNet" is derived. A proof-of-concept numerical simulation is conducted using this method, and the results are experimentally verified. In this technique, the multiple modes of Gaussian and Laguerre-Gaussian beams illuminate the displayed digits dataset number, and the beams are then propagated through the diffuser before being captured on the beam profiler. Furthermore, we investigated whether imaging through diffuse media using multiple modes of vortex beams instead of Gaussian beams improves the imaging system's imaging capability and enhances the network's reconstruction ability. Our results show that illuminating the diffuser using vortex beams and employing the "LGDiffNet" network provides enhanced image reconstruction compared to existing modalities. An enhancement of ~ 1 dB, in terms of PSNR, is achieved using this method when a highly scattering diffuser of grit 220 and width 2 mm (7.11 times the mean free path) is used. No additional optimizations or reference beams were used in the imaging system, revealing the robustness of the "LGDiffNet" network and the adaptability of the imaging system for practical applications in medical imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799672PMC
http://dx.doi.org/10.1038/s41598-022-05358-wDOI Listing

Publication Analysis

Top Keywords

diffuse media
20
vortex beams
16
imaging diffuse
12
multiple modes
12
imaging
9
beams
8
beams deep
8
deep learning
8
image reconstruction
8
media multiple
8

Similar Publications

Information propagation dynamics on heterogeneous-homogeneous coupling bi-layer networks.

Sci Rep

December 2024

State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, 100024, China.

The proliferation of multi-platform network information has expanded communication channels for users, enabling the integration and dissemination of information across both Social Networking Services (SNS)-type app and Instant Message (IM)-type app. With the intensification of convergent communication, some users in the two types of apps show active alternation in spreading information to each other's platforms. The study of the evolution trend of information in different platforms is of great practical significance for the mastery of the communication law.

View Article and Find Full Text PDF

Introduction: Environmental changes and modifications in leisure habits have facilitated the emergence of new bacteria responsible for causing ear infections with different presentations. In this context, Turicella otitidis is a pathogen for which isolated cases of external and middle ear infections have been reported. However, our experience indicates a resurgence in its occurrence in recent years.

View Article and Find Full Text PDF

Industrialization has led to significant increases in the types and quantities of pollutants, with environmental pollutants widely present in various media, including the air, food, and everyday items. These pollutants can enter the human body via multiple pathways, including ingestion through food and absorption through the skin; this intrusion can disrupt the production, release, and circulation of hormones in the body, resulting in a range of illnesses that affect the reproductive, endocrine, and nervous systems. Consequently, these pollutants pose substantial risks to human health.

View Article and Find Full Text PDF

DLBCL cells with ferroptosis morphology can be detected with a deep convolutional neural network.

Biomed Pharmacother

December 2024

Medical Research Center, Oulu University Hospital, Oulu, Finland; Department of Internal Medicine, Länsi-Pohja Central Hospital, Kemi, Finland; Biomedicine and Internal Medicine Research Unit, University of Oulu, Oulu, Finland.

It has been demonstrated that diffuse large B-cell lymphoma (DLBCL) is especially sensitive to ferroptosis. Currently, confirming the presence of ferroptosis requires flow cytometry, which is a time consuming and labor-intensive task. Blistering of the cell membrane has been shown to be a ferroptosis-specific morphological change.

View Article and Find Full Text PDF

Uniform, mesoporous copper(II) oxide nanospindles (CuO NSs) were synthesized via a method based on templated hydrothermal oxidation of copper in the presence of monodisperse poly(glycerol dimethacrylate--methacrylic acid) nanoparticles (poly(GDMA--MAA) NPs). Subsequent decoration of CuO NSs with a CaO nanoshell (CuO@CaO NSs) yielded a nanozyme capable of Cu(I)/Cu(II) redox cycling. Activation of the Cu(I)/Cu(II) cycle by exogenously generated HO from the CaO nanoshell significantly enhanced glutathione (GSH) depletion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!