Background: Research into prosthesis training and design puts a burden on the small population of people with upper-limb absence who can participate in these studies. One solution is to use a prosthetic hand simulator, which allows for attaching a hand prosthesis to an intact limb. However, whether the results of prosthesis simulator studies can be translated to people with upper-limb absence using a hand prosthesis is unclear.
Objective: To review the literature on prosthetic hand simulators, provide an overview of current designs, and highlight the differences and similarities between prosthesis simulators and traditional prostheses.
Methods: A Boolean combination of keywords was used to search 3 electronic databases: PubMed, Scopus and Web of Science. Relevant articles in English were selected.
Results: In total, 52 papers were included in the review, and an overview of the state of the art was presented. We identified the key differences between prosthesis simulators and traditional prostheses as the position of the terminal device and the available degrees of freedom of the arm and (prosthetic) wrist.
Conclusions: This paper provides an overview of prosthesis simulator designs over the past 27 years and an overview of the similarities and differences between prosthesis simulators and prostheses. The literature does not provide enough evidence to establish whether the results obtained from simulator studies could be translated to prostheses. A recommendation for future simulator design is to constrain pro- and supination of the forearm of anatomically intact participants and add a prosthetic wrist that can pro- and supinate. Additional research is required to find the ideal terminal device position for a prosthesis simulator with respect to the person's hand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rehab.2022.101635 | DOI Listing |
BMC Oral Health
December 2024
Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
Background: The selection guideline for the implant-supported bar connectors (ISBC) of hybrid denture is lacking. This study investigated the maximum von Mises stress (vMS), stress distribution, and displacement of various geometric ISBC in mandibular hybrid dentures, as well as the maximum principal stress (σmax) in the acrylic resin part, through finite element analysis.
Methods: Four different geometric cross-sectional patterns for mandibular ISBC-L, Y, I, and Square-of equal volume, based on the "All-on-4" concept, were created.
BMC Oral Health
December 2024
Department of Biomaterials Science and Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland.
Background: Short fiber-reinforced composites (SFRCs) are restorative materials for large cavities claimed to effectively resist crack propagation. This study aimed to compare the mechanical properties and physical characteristics of five commercially available SFRCS (Alert, Fibrafill Flow, Fibrafill Dentin, everX Flow, and everX Posterior) against a conventional particulate-filled composite (PFC, Essentia Universal).
Methods: The following characteristics were evaluated in accordance with ISO standards: flexural strength and modulus and fracture toughness.
BMC Musculoskelet Disord
December 2024
Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China.
Background: This study investigated the impact of higher interfragmentary compression force (IFCF) on the stability of locking plate fixation in lateral tibial plateau fractures.
Methods: Biomechanical experiments and finite element analysis (FEA) were employed to compare the performance of the AO cancellous lag screw (AOCLS) and a newly developed combined cancellous lag screw (CCLS).
Results: The results demonstrated that the CCLS provided a higher IFCF without the risk of over-screwing, significantly improving fixation stability.
Sci Rep
December 2024
Center for Surgical Innovation and Engineering, Cedars Sinai Health System, Los Angeles, 90048, USA.
Mechanical failure of medical implants, especially in orthopedic poses a significant burden to the patients and healthcare system. The majority of the implant failures are diagnosed at very late stages and are of mechanical causes. This makes the diagnosis and screening of implant failure very challenging.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Basic Sciences, Araçatuba Dental School, São Paulo State University - UNESP, Araçatuba, 16066-840, Brazil.
Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!