TNF-α, a proinflammatory cytokine, is a crucial mediator of psoriasis pathogenesis. TNF-α functions by activating TNFR1 and TNFR2. Anti-TNF drugs that neutralize TNF-α, thus blocking the activation of TNFR1 and TNFR2, have been proven highly therapeutic in psoriatic diseases. TNF-α also plays an important role in host defense; thus, anti-TNF therapy can cause potentially serious adverse effects, including opportunistic infections and latent tuberculosis reactivation. These adverse effects are attributed to TNFR1 inactivation. Therefore, understanding the relative contributions of TNFR1 and TNFR2 has clinical implications in mitigating psoriasis versus global TNF-α blockade. We found a significant reduction in psoriasis lesions as measured by epidermal hyperplasia, characteristic gross skin lesion, and IL-23 or IL-17A levels in Tnfr2-knockout but not in Tnfr1-knockout mice in the imiquimod psoriasis model. Furthermore, imiquimod-mediated increase in the myeloid dendritic cells, TNF/inducible nitric oxide synthase‒producing dendritic cells, and IL-23 expression in the draining lymph nodes were dependent on TNFR2 but not on TNFR1. Together, our results support that psoriatic inflammation is not dependent on TNFR1 activity but is driven by a TNFR2-dependent IL-23/IL-17 pathway activation. Thus, targeting the TNFR2 pathway may emerge as a potential next-generation therapeutic approach for psoriatic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314460 | PMC |
http://dx.doi.org/10.1016/j.jid.2021.12.036 | DOI Listing |
J Am Soc Nephrol
January 2025
Department of Pediatrics, Division of Nephrology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
Background: We have previously studied biomarkers of tubular health (EGF), injury (KIM-1), dysfunction (alpha-1 microglobulin), and inflammation (TNFR-1, TNFR-2, MCP-1, YKL-40, suPAR), and demonstrated that plasma KIM-1, TNFR-1, TNFR-2 and urine KIM-1, EGF, MCP-1, urine alpha-1 microglobulin are each independently associated with CKD progression in children. In this study, we used bootstrapped survival trees to identify a combination of biomarkers to predict CKD progression in children.
Methods: The CKiD Cohort Study prospectively enrolled children 6 months to 16 years old with an eGFR of 30-90 ml/min/1.
Cytotechnology
February 2025
Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India.
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
Jacaranone derived from , a traditional Chinese medicine used for centuries, has been documented to exhibit anti-inflammatory and antiproliferative properties in various tumor cell lines. However, the mechanism of action and relationship between inflammation and apoptosis induced by jacaranone remain inadequately elucidated. In this study, the targets of jacaranone and cancer were identified from various databases, while potential targets and pathways were predicted through the analysis of the protein-protein interactions (PPI) network and pathway enrichment.
View Article and Find Full Text PDFUps J Med Sci
December 2024
Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
Background: Higher circulating levels of tumor necrosis factor (TNF) alpha receptors 1 (TNFR1) and 2 (TNFR2) are associated with increased long-term mortality and impaired kidney function.
Aim: To study associations between levels of TNFR1 and TNFR2 and all-cause mortality as well as estimated glomerular filtration rate (eGFR) decline.
Population And Methods: Patients with chronic kidney disease (CKD) stages 3-5 in the Salford Kidney Study were included.
Mol Ther
December 2024
State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China. Electronic address:
Tumor necrosis factor (TNF) has been recognized as an immune activation factor in tumor immunotherapy. Our study demonstrated that TNF blockade markedly enhanced the antitumor efficacy of oncolytic adenovirus (AdV) therapy. To minimize systemic side effects, we engineered a recombinant oncolytic AdV encoding a TNF inhibitor (AdV-TNFi) to confine TNF blockade within the tumor microenvironment (TME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!