Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Among the matrices for enzyme immobilization, activated carbon has been standing out in immobilization processes due to its properties and to its characteristics that provide superficial modification by inserting new functional groups capable of binding the enzymes forming covalent bonds. In this study the effect of different modification methods of activated carbon (functionalization with genipin, metallization, metallization in the presence of chelating agent, and functionalization with glutaraldehyde) on efficiency of pepsin immobilization was evaluated. The effect of immobilization pH and the reaction medium on hydrolysis activity of bovine casein was also evaluated. The functionalization of activated carbon using iron ions allowed an immobilization capacity of 98.93 mg·g, with immobilization efficiency greater than 99%, and enzyme activity of 2.30 U, which was higher than the other modifications, and closer to the enzyme in the native form activity (3.32 U). In general, the carbon surface modifications were responsible for forming more stable bonds between support and enzyme, improving its proteolytic activity (from 1.84 to 2.30 U) when compared to traditional immobilization methods by adsorption and covalent binding using glutaraldehyde (from 1.04 to 1.1 U).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.01.135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!