A figure of merits-based performance comparison of various advanced functional nanomaterials for adsorptive removal of gaseous ammonia.

Sci Total Environ

Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Published: May 2022

The implementation of sustainable industrial development based on energy/cost-effective techniques with zero/low rate of pollutant emission is an ideal strategy for the proper management of a natural environment. Gaseous ammonia released from a variety of anthropogenic sources (e.g., agriculture, pharmaceuticals, commercial cleaning products, and refrigerant) is estimated to be as high as 150 million tons∙year. To reduce the negative effects of atmospheric ammonia, the great utility of advanced functional nanomaterials (e.g., metal organic frameworks, covalent organic polymers, metal/metal oxide nanoparticles, and carbon nanostructures) has been recognized. To gain a better understanding of the sorptive removal potential of diverse materials, their performance has been evaluated based on the key performance merits (e.g., initial concentration, sorption capacity, and partition coefficient). Generally, the PC values can be applied to significantly estimate the contaminant adsorption potential of NMs via balancing the biased influences of operating parameters (e.g., initial concentration of pollutants) as perceived for the partitioning of compounds between aqueous phases at equilibrium (e.g., Henry's Law). Therefore, in this work, we have proposed the PC as a prosperous performance merit (in terms of heterogeneity of surface and strength of adsorption process) for the selection of high performance nano-adsorbents for gaseous ammonia. Moreover, the water stability, recyclability, economic aspects, and future perspectives have also been discussed for real-world applications of advanced nanomaterial against gaseous ammonia adsorption. The outcome of this evaluation will be expedient for the classification/selection of the most effectual and cost-effective options for mitigation of environmental pollutants like gaseous ammonia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153428DOI Listing

Publication Analysis

Top Keywords

gaseous ammonia
20
advanced functional
8
functional nanomaterials
8
initial concentration
8
ammonia
6
performance
5
gaseous
5
figure merits-based
4
merits-based performance
4
performance comparison
4

Similar Publications

Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions.

J Hazard Mater

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The losses of reactive gaseous nitrogen (N), including ammonia (NH) and nitrous oxide (NO), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH and NO fluxes, compost properties and bacterial communities.

View Article and Find Full Text PDF

Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia.

Int J Biol Macromol

December 2024

National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.

Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.

View Article and Find Full Text PDF

Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.

View Article and Find Full Text PDF

Effects of fine particulate matter and its chemical constituents on influenza-like illness in Guangzhou, China.

Ecotoxicol Environ Saf

December 2024

Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China. Electronic address:

Background: Although the link between fine particulate matter (PM) and influenza-like illness (ILI) is well established, the effect of the chemical constituents of PM on ILI remains unclear. This study aims to explore this effect in Guangzhou, China.

Methods: Daily data on ILI cases, PM levels, and specific PM constituents (black carbon [BC], chlorine [Cl], ammonia [NH], nitrate [NO], and sulfate [SO]) in Guangzhou, China, were collected for the period of 2014-2019.

View Article and Find Full Text PDF

Ammonia borane and amine boranes are main group analogues of alkanes, which are characterised by their large gravimetric hydrogen content. This hydrogen can be released in dehydrocoupling and dehydropolymerisation reactions to obtain B-N oligomers and polymers that are of importance as precursors for functional B-N materials. Furthermore, amine boranes are potent reagents for application in transfer hydrogenation reactions, representing a versatile, easy-to-handle alternative to the use of gaseous hydrogen for the reduction of organic compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!