Cellular prion protein in human plasma-derived extracellular vesicles promotes neurite outgrowth via the NMDA receptor-LRP1 receptor system.

J Biol Chem

Department of Anesthesiology and Program in Neurosciences, University of California San Diego, La Jolla, California, USA; San Diego Veterans Administration Healthcare System, San Diego, California, USA.

Published: March 2022

Exosomes and other extracellular vesicles (EVs) participate in cell-cell communication. Herein, we isolated EVs from human plasma and demonstrated that these EVs activate cell signaling and promote neurite outgrowth in PC-12 cells. Analysis of human plasma EVs purified by sequential ultracentrifugation using tandem mass spectrometry indicated the presence of multiple plasma proteins, including α-macroglobulin, which is reported to regulate PC-12 cell physiology. We therefore further purified EVs by molecular exclusion or phosphatidylserine affinity chromatography, which reduced plasma protein contamination. EVs subjected to these additional purification methods exhibited unchanged activity in PC-12 cells, even though α-macroglobulin was reduced to undetectable levels. Nonpathogenic cellular prion protein (PrP) was carried by human plasma EVs and essential for the effects of EVs on PC-12 cells, as EV-induced cell signaling and neurite outgrowth were blocked by the PrP-specific antibody, POM2. In addition, inhibitors of the N-methyl-d-aspartate (NMDA) receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1) blocked the effects of plasma EVs on PC-12 cells, as did silencing of Lrp1 or the gene encoding the GluN1 NMDA-R subunit (Grin1). These results implicate the NMDA-R-LRP1 complex as the receptor system responsible for mediating the effects of EV-associated PrP. Finally, EVs harvested from rat astrocytes carried PrP and replicated the effects of human plasma EVs on PC-12 cell signaling. We conclude that interaction of EV-associated PrP with the NMDA-R-LRP1 complex in target cells represents a novel mechanism by which EVs may participate in intercellular communication in the nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861162PMC
http://dx.doi.org/10.1016/j.jbc.2022.101642DOI Listing

Publication Analysis

Top Keywords

human plasma
16
plasma evs
16
neurite outgrowth
12
evs
12
cell signaling
12
cellular prion
8
prion protein
8
extracellular vesicles
8
receptor system
8
evs participate
8

Similar Publications

Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.

Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.

View Article and Find Full Text PDF

Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal bile acid reuptake via the apical sodium-dependent bile acid transporter (ASBT) was applied to predict the systemic plasma bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile acid homeostasis upon oral exposure of rats.

View Article and Find Full Text PDF

Amino acid metabolism provides significant insight into the development and prevention of many viral diseases. Therefore, the present study aimed to compare the amino acid profiles of hand, foot, and mouth disease (HFMD) patients with those of healthy individuals and to further reveal the molecular mechanisms of HFMD severity. Using UPLC-MS/MS, we determined the plasma amino acid expression profiles of pediatric patients with HFMD (mild,  = 42; severe, = 43) and healthy controls ( = 25).

View Article and Find Full Text PDF

Background: Hypertrophic scar (HS) is a fibroproliferative disorder resulting from abnormal healing of skin tissue after injury. Although various therapies are currently employed in clinical to treat HSs, there is no widely accepted standard therapy. Micro-plasma radiofrequency (MPR) and autologous chyle fat grafting are emerging treatments for this condition, and they have demonstrated promising therapeutic outcomes in clinical applications.

View Article and Find Full Text PDF

Impact of enzyme replacement therapy on clinical manifestations in females with Fabry disease.

Orphanet J Rare Dis

December 2024

Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany.

Background: The aim of our multicenter study was to investigate the implementation of the European Fabry guidelines on therapeutic recommendations in female patients with Fabry disease (FD) and to analyze the impact of enzyme replacement therapy (ERT) in treated and untreated females.

Results: Data from 3 consecutive visits of 159 female FD patients from 6 Fabry centers were retrospectively analyzed. According to their treatment, patients were separated in 3 groups (untreated, n = 71; newly ERT-treated, n = 47; long-term ERT-treated, n = 41).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!