Background: Diabetic nephropathy (DN) is a critical and the most common microvascular complication and its pathogenesis is still faintly understood. Thus, this study was performed to examine the long non-coding RNA ZNFX1 Antisense Gene Protein 1 (lncRNA ZFAS1) biological function and mechanism of regulation in DN.
Method: Human glomerular mesangial cells (HGMC) were induced with high glucose (HG, 25 mM) to establish HG-induced cell viability, pro-inflammation observed in DN. After, target miRNA and mRNA were predicted through Lncbase and Targetscan. Subsequently, the expression of ZFAS1, miR-588, and ROCK1 in DN clinical samples and cell-model was examined through qRT-PCR and western blot analysis. We upheld the targeted interaction between miR-588 and ZFAS1 or ROCK1 through a dual-luciferase reporter assay. The proliferation of the cell was also examined through CCK-8 assay, while the level of HG-induced oxidative stress was established by measuring reactive oxygen species (ROS) level, and also the activities of antioxidant enzymes in the cell. Lastly, the level of accumulated extracellular matrix (ECM) protein-fibronectin and collagen type IV, and inflammatory cytokines produced by the cell was analyzed through western blot analysis and ELISA.
Results: ZFAS1 was significantly upregulated in the DN blood samples and HG-induced HGMC. Prediction result revealed that the ZFAS1 endogenously targets the miR-588 seed sequence while miR-588 plays a role in post-transcriptional regulation of ROCK1 mRNA. Moreover, we found that miR-588 expression was significantly downregulated in DN blood samples and negatively correlates with ZFAS1 expression. Further results show that silencing ZFAS1 had a protective effect on HG-induced proliferation, oxidative stress, fibrosis, and inflammation in HGMC while miR-588 inhibition and ROCK1 overexpression reversed this effect.
Conclusions: Altogether, our data suggest that ZFAS1 regulates the proliferation, oxidative stress, fibrosis, and inflammation of high glucose-induced diabetic nephropathy through the miR-588/ROCK1 axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796624 | PMC |
http://dx.doi.org/10.1186/s13098-022-00791-3 | DOI Listing |
Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Alzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti (ABUAD), Ado-Ekiti, Ekiti state, Nigeria.
Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).
Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!