Novel bi-allelic MSH4 variants causes meiotic arrest and non-obstructive azoospermia.

Reprod Biol Endocrinol

Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.

Published: January 2022

Background: Non-obstructive azoospermia (NOA) is one of the most severe type in male infertility, and the genetic causes of NOA with meiotic arrest remain elusive.

Methods: Four Chinese families with NOA participated in the study. We performed whole-exome sequencing (WES) for the four NOA-affected patients in four pedigrees. The candidate causative gene was further verified by Sanger sequencing. Hematoxylin and eosin staining (H&E) and immunohistochemistry (IHC) were carried out to evaluate the stage of spermatogenesis arrested in the patients with NOA.

Results: We identified two novel homozygous frameshift mutations of MSH4 and two novel compound heterozygous variants in MSH4 in four pedigrees with NOA. Homozygous loss of function (LoF) variants in MSH4 was identified in the NOA-affected patient (P9359) in a consanguineous Chinese family (NM_002440.4: c.805_812del: p.V269Qfs*15) and one patient with NOA (P21504) in another Chinese family (NM_002440.4: c.2220_2223del:p.K741Rfs*2). Also, compound heterozygous variants in MSH4 were identified in two NOA-affected siblings (P9517 and P9517B) (NM_002440.4: c.G1950A: p.W650X and c.2179delG: p.D727Mfs*11), and the patient with NOA (P9540) (NM_002440.4: c.G244A: p.G82S and c.670delT: p.L224Cfs*3). Histological analysis demonstrated lack of spermatozoa in seminiferous tubules of all patients and IHC showed the spermatogenesis arrested at the meiotic prophase I stage. Consistent with the autosomal recessive mode of inheritance, all of these mutations were inherited from heterozygous parental carriers.

Conclusions: We identified that six novel mutations in MSH4 responsible for meiotic arrest and NOA. And these results provide researchers with a new insight to understand the genetic etiology of NOA and to identify new loci for genetic counselling of NOA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796546PMC
http://dx.doi.org/10.1186/s12958-022-00900-xDOI Listing

Publication Analysis

Top Keywords

meiotic arrest
12
variants msh4
12
noa
9
non-obstructive azoospermia
8
spermatogenesis arrested
8
identified novel
8
mutations msh4
8
compound heterozygous
8
heterozygous variants
8
msh4 identified
8

Similar Publications

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.

Asian J Androl

January 2025

Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.

Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 (MCMDC2) genes in 768 NOA patients by whole-exome sequencing (WES).

View Article and Find Full Text PDF

Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.

View Article and Find Full Text PDF

Unlabelled: Sex chromosomes often evolve unique patterns of gene expression in spermatogenesis. In many species, sex-linked genes are downregulated during meiosis in response to asynapsis of the heterogametic sex chromosome pair (meiotic sex chromosome inactivation; MSCI). Our understanding of this process has been limited to a handful of species, including mammals, , and Based on findings from these taxa, MSCI has been viewed as likely a conserved process.

View Article and Find Full Text PDF

Temporal optimization of meiotic arrest for enhancing oocyte maturity during in vitro maturation of porcine median antral follicles.

Reprod Biol

December 2024

Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kustogen, Chuncheon 24341, Republic of Korea. Electronic address:

During in vitro maturation (IVM), median antral follicles (MAFs) were mechanically aspirated from the porcine ovarian cortex, and this process causes an early disconnection of follicular somatic cells from oocytes within antral follicles before the formation of graafian follicles. Thus, nuclear maturation is accelerated ahead of the completion of cytoplasmic maturation. Dibutyryl-cAMP (dbcAMP), a well-known cAMP modulator, is used to inhibit the resumption of meiosis in immature oocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!