Facile Synthesis of a Redox-Responsive Hyperbranched Polymer Prodrug as a Unimolecular Micelle for the Tumor-Selective Drug Delivery.

Bioconjug Chem

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

Published: February 2022

Demicellization of the self-assembled multimolecular micelles upon dilution restricts their application as drug delivery systems (DDSs) for tumor treatment. Here, a redox-responsive hyperbranched polymer prodrug (HBPP) was designed with a high drug content of 62.0% as a unimolecular micelle for the tumor-selective drug delivery, via the facile self-condensing vinyl polymerization (SCVP) of redox-responsive doxorubicin-based prodrug monomer MA-SS-DOX and poly(ethylene glycol) methacrylate (PEGMA) with -chloromethylstyrene (CMS) as an inimer. The unimolecular micelle could be easily obtained with a hydrodynamic diameter of 122 nm, showing excellent GSH-triggered drug release performance with a cumulative release of 60.9% within 85 h but a low premature drug leakage of 3.2%. The unimolecular micelle exhibited selective tumor growth inhibition on HepG2 cells but no obvious cytotoxicity on L02 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.2c00013DOI Listing

Publication Analysis

Top Keywords

unimolecular micelle
16
drug delivery
12
redox-responsive hyperbranched
8
hyperbranched polymer
8
polymer prodrug
8
micelle tumor-selective
8
tumor-selective drug
8
drug
6
facile synthesis
4
synthesis redox-responsive
4

Similar Publications

Dually fluorinated unimolecular micelles for stable oxygen-carrying and enhanced photosensitive efficiency to boost photodynamic therapy against hypoxic tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers-characterized by variations in backbone length, grafting density, and self-assembly morphology-offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a "grafting-from" strategy.

View Article and Find Full Text PDF

Nanocarrier-mediated therapeutic delivery to brain tissue is impeded by tightly controlled transportation across the blood-brain barrier (BBB). Herein, we report a well-defined core-shell star-shaped unimolecular micelle (star-UMM; a single polymer entity) as an efficient BBB-breaching nanoparticle for brain-specific administration of the fluorescent anticancer drug doxorubicin and mapping of brain tissues by the near-infrared biomarker IR780 in mice. The star-UMM was engineered by precisely programming the polymer topology having hydrophobic and hydrophilic polycaprolactone blocks and in-built with lysosomal enzyme-biodegradation stimuli to deliver the payloads at intracellular compartments.

View Article and Find Full Text PDF

Controlled Fabrication of Unimolecular Micelles as Versatile Nanoplatform for Multifunctional Applications.

Small

November 2024

School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China.

Unimolecular micelles (UMs) are nano-sized structures that are composed of single molecules with precise composition. Compared to self-assembled polymeric micelles, UMs possess ultra-stable property even in complex biological environment. With the development of controllable polymerization and coupling chemistry, the preparation of narrowly monodispersed UMs with precise morphology and size has been realized, which further facilitates their multifunctional applications.

View Article and Find Full Text PDF

Precise Construction of Chiral Plasmonic Nanoparticles for Enantioselective Discrimination.

J Phys Chem Lett

August 2024

Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Article Synopsis
  • * This study introduces a new method for creating chiral gold nanoparticles using star-like block copolymers as templates, allowing better control over the nanoparticles' size, shape, and chirality.
  • * The research shows that these chiral nanoparticles can achieve significant enhancement in surface-enhanced Raman scattering, leading to improved chiral recognition on various surfaces, suggesting a promising approach for developing specialized chiral nanomaterials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!