Transthyretin (TTR) aggregation via misfolding of a mutant or wild-type protein leads to systemic or partial amyloidosis (ATTR). Here, we utilized variable biophysical assays to characterize two distinct aggregation pathways for mTTR (a synthesized monomer TTR incapable of association into a tetramer) at pH 4.3 and also pH 7.4 with agitation, referred to as mTTR aggregation and fibrillation, respectively. The findings suggest that early-stage conformational changes termed monomer activation here determine the aggregation pathway, resulting in developing either amorphous aggregates or well-organized fibrils. Less packed partially unfolded monomers consisting of more non-regular secondary structures that were rapidly produced via a mildly acidic condition form amorphous aggregates. Meanwhile, more hydrophobic and packed monomers consisting of rearranged β sheets and increased helical content developed well-organized fibrils. Conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with leucine and glutamine (L-SPIONs and G-SPIONs in order) via a trimethoxysilane linker provided the chance to study the effect of hydrophobic/hydrophilic surfaces on mTTR aggregation. The results indicated a powerful inhibitory effect of hydrophobic L-SPIONs on both mTTR aggregation and fibrillation. Monomer depletion was introduced as the governing mechanism for inhibiting mTTR aggregation, while a chaperone-like property of L-SPIONs by maintaining an mTTR native structure and adsorbing oligomers suppressed the progression of further fibril formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c08796 | DOI Listing |
J Phys Chem B
March 2022
Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran.
Transthyretin (TTR) aggregation via misfolding of a mutant or wild-type protein leads to systemic or partial amyloidosis (ATTR). Here, we utilized variable biophysical assays to characterize two distinct aggregation pathways for mTTR (a synthesized monomer TTR incapable of association into a tetramer) at pH 4.3 and also pH 7.
View Article and Find Full Text PDFBiomacromolecules
March 2020
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy.
Alzheimer's disease is associated with the deposition of the amyloid-β peptide (Aβ) into extracellular senile plaques in the brain. In vitro and in vivo observations have indicated that transthyretin (TTR) acts as an Aβ scavenger in the brain, but the mechanism has not been fully resolved. We have monitored the aggregation process of Aβ by thioflavin T fluorescence, in the presence or absence of different concentrations of preformed seed aggregates of Aβ, of wild-type tetrameric TTR (WT-TTR), and of a variant engineered to be stable as a monomer (M-TTR).
View Article and Find Full Text PDFCell Mol Life Sci
April 2020
Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
Transthyretin amyloidosis (ATTR) is a progressive life-threatening disease characterized by the deposition of transthyretin (TTR) amyloid fibrils. Several pathogenic variants have been shown to destabilize TTR tetramers, leading to aggregation of misfolded TTR fibrils. However, factors that underlie the differential age of disease onset amongst amyloidogenic TTR variants remain elusive.
View Article and Find Full Text PDFChemMedChem
May 2018
Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
β-Amyloid (Aβ) aggregation is causally linked to neuronal pathology in Alzheimer's disease; therefore, several small molecules, antibodies, and peptides have been tested as anti-Aβ agents. We developed two compounds based on the Aβ-binding domain of transthyretin (TTR): a cyclic peptide cG8 and an engineered protein mTTR, and compared them for therapeutically relevant properties. Both mTTR and cG8 inhibit fibrillogenesis of Aβ, with mTTR inhibiting at a lower concentration than cG8.
View Article and Find Full Text PDFProtein Sci
July 2018
Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, Missouri, 63130.
Transthyretin (TTR) is a homotetrameric protein that is found in the plasma and cerebrospinal fluid. Dissociation of TTR tetramers sets off a downhill cascade of amyloid formation through polymerization of monomeric TTR. Interestingly, TTR has an additional, biologically relevant activity, which pertains to its ability to slow the progression of amyloid beta (Aβ) associated pathology in transgenic mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!