A novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide. Plasmon-coupled AuNPs are hexagonally arranged along branch patterns whose resonance lies in the red band (∼675 nm). Plasmon-uncoupled AuNPs are sprinkled onto the substrate, and they exhibit a narrow resonance at 524 nm. Numerical simulations of the plasmonic response of the substrate through the finite-difference time-domain (FDTD) method reveal the presence of electromagnetic hot spots mainly confined in the interparticle junctions. In order to realize a PEF-based device for potential multiplexing applications, the plasmon resonances are coupled with the emission peak of 5-carboxyfluorescein (5-FAM) fluorophore and with the excitation/emission peaks of cyanine 5 (Cy5). The substrate is implemented in a malaria apta-immunoassay to detect lactate dehydrogenase (LDH) in human whole blood. Antibodies against biomarkers constitute the capture layer, whereas fluorescently labeled aptamers recognizing LDH are adopted as the top layer. The fluorescence emitted by 5-FAM and Cy5 fluorophores are linearly correlated (logarithm scale) to the LDH concentration over five decades. The limits of detection are 50 pM (1.6 ng/mL) with the 5-FAM probe and 260 fM (8.6 pg./mL) with the Cy5 probe. No sample preconcentration and complex pretreatments are required. Average fluorescence amplifications of 160 and 4500 are measured in the 5-FAM and Cy5 channel, respectively. These results are reasonably consistent with those worked out by FDTD simulations. The implementation of the proposed approach in multiwell-plate-based bioassays would lead to either signal redundancy (two dyes for a single analyte) or to a simultaneous detection of two analytes by different dyes, the latter being a key step toward high-throughput analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832399 | PMC |
http://dx.doi.org/10.1021/acsami.1c23438 | DOI Listing |
J Am Chem Soc
May 2023
Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.
Many RNA delivery strategies require efficient endosomal uptake and release. To monitor this process, we developed a 2'-OMe RNA-based ratiometric pH probe with a pH-invariant 3'-Cy5 and 5'-FAM whose pH sensitivity is enhanced by proximal guanines. The probe, in duplex with a DNA complement, exhibits a 48.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Department of Physics "E. Pancini", University Federico II, Via Cintia 26, 80126 Naples, Italy.
A novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
May 2020
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
Supramolecular assembly is a simple and effective way to produce multi-level biostructures to mimic the self-assembly of biomolecules in organisms. The study on peptide assembly behaviors would benefit a lot to understand what goes on in life, as well as in the construction of plenty of functional biomaterials that have potential applications in various fields. Since cellular microenvironments are crowded and contain various biomolecules, studying protein and peptide co-assembly is of great interest.
View Article and Find Full Text PDFElectrophoresis
July 2014
IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Plouzané, France; Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UMR 6197, Plouzané, France; CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Plouzané, France.
By using a fluorescent exonuclease assay, we reported unusual electrophoretic mobility of 5'-indocarbo-cyanine 5 (5'-Cy5) labelled DNA fragments in denaturing polyacrylamide gels. Incubation time and enzyme concentration were two parameters involved in the formation of 5'-Cy5-labelled degradation products, while the structure of the substrate was slightly interfering. Replacement of positively charged 5'-Cy5-labelled DNA oligonucleotides (DNA oligos) by electrically neutral 5'-carboxyfluorescein (5'-FAM) labelled DNA oligos abolished the anomalous migration pattern of degradation products.
View Article and Find Full Text PDFCurr Pharm Biotechnol
June 2015
Center of Commercialization of Fluorescence Technologies (CCFT), Dept. of Molecular Biology & Immunology, UNTHSC, Fort Worth, TX 76107, USA.
In our previous paper we showed that the MMP-9 enzyme recognizes a specific peptide sequence, Lys-Gly- Pro-Arg-Ser-Leu-Ser-Gly-Lys, and cleaves the peptide into two parts [1]. In this study, the peptide is labeled with two dyes, carboxyfluorescein (5-FAM) and Cy5. A highly efficient energy transfer of over 80% results in a dominant emission of Cy5 at ~670 nm with an excitation of 470 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!