Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging. In addition, its efficient type I photoreaction endows NanoPcM with a superior immunogenic photodynamic therapy (PDT) effect against solid tumors. The combination of NanoPcM-based PDT and αPD-1-based immunotherapy can efficiently inhibit tumor growth, reduce spontaneous lung metastasis, and trigger abscopal effects. This study should provide a perspective for the future design of nanomaterials as promising phototheranostics for cancer imaging and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c10565DOI Listing

Publication Analysis

Top Keywords

nanostructured phthalocyanine/albumin
4
phthalocyanine/albumin supramolecular
4
supramolecular assembly
4
assembly fluorescence
4
fluorescence turn-on
4
imaging
4
turn-on imaging
4
imaging photodynamic
4
photodynamic immunotherapy
4
immunotherapy smart
4

Similar Publications

Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging.

View Article and Find Full Text PDF

Biocompatible Iron Phthalocyanine-Albumin Assemblies as Photoacoustic and Thermal Theranostics in Living Mice.

ACS Appl Mater Interfaces

June 2017

Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China.

Exploring novel and versatile nanomaterials for the construction of personalized multifunctional phototheranostics with significant potentials in bioimaging-guided tumor phototherapies has attracted considerable attention. Herein, the phototheranostic agent human serum albumin-iron (II) phthalocyanine FePc nanoparticles (HSA-FePc NPs) were fabricated for photoacoustic (PA) imaging-guided photothermal therapy (PTT) of cancer in vivo. The prepared HSA-FePc NPs exhibited high stability, efficient NIR absorption, good capability and stability of photothermal behavior with a high photothermal conversion efficiency of ∼44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!