Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging. In addition, its efficient type I photoreaction endows NanoPcM with a superior immunogenic photodynamic therapy (PDT) effect against solid tumors. The combination of NanoPcM-based PDT and αPD-1-based immunotherapy can efficiently inhibit tumor growth, reduce spontaneous lung metastasis, and trigger abscopal effects. This study should provide a perspective for the future design of nanomaterials as promising phototheranostics for cancer imaging and therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c10565 | DOI Listing |
ACS Nano
February 2022
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2017
Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China.
Exploring novel and versatile nanomaterials for the construction of personalized multifunctional phototheranostics with significant potentials in bioimaging-guided tumor phototherapies has attracted considerable attention. Herein, the phototheranostic agent human serum albumin-iron (II) phthalocyanine FePc nanoparticles (HSA-FePc NPs) were fabricated for photoacoustic (PA) imaging-guided photothermal therapy (PTT) of cancer in vivo. The prepared HSA-FePc NPs exhibited high stability, efficient NIR absorption, good capability and stability of photothermal behavior with a high photothermal conversion efficiency of ∼44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!