Selective Photoinduced Dimerization and Slow Recovery of a BLUF Domain of EB1.

J Phys Chem B

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

Published: February 2022

The EAL-BLUF fragment from BldP1 (EB1) light-dependently hydrolyzes c-di-GMP. Herein, the photoreaction of the BLUF domain of EB1 (eBLUF) is studied. It is found for the first time that a monomeric BLUF domain forms a dimer upon illumination and its dark recovery is very slow. The dimer of light- and dark-state protomers (LD-dimer) is much more stable than that of two light-state protomers (LL-dimer), and the dark recovery of the LD-dimer is approximately 20 times slower than that of the LL-dimer, which is suitable for optogenetic tools. The secondary structure of the L-monomer is different from those of the D-monomer and the LD-dimer. The transient grating measurements reveal that this conformational change occurs simultaneously with dimerization. Although the W91A mutant exhibits a spectral red shift, it forms a heterodimer with the L-monomer of wild-type eBLUF with similar stability to the LD-dimer. This suggests that the conformation of the dimerization site of W91A is similar to that of the dark state (dark-mimic mutant); that is, the light-induced structural changes in the chromophore cavity are not transferred to the other part of the protein. The selective photoinduced dimerization of eBLUF is potentially useful to control interprotein interactions between two different effector domains bound to these proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c10100DOI Listing

Publication Analysis

Top Keywords

bluf domain
12
selective photoinduced
8
photoinduced dimerization
8
domain eb1
8
dark recovery
8
dimerization
4
dimerization slow
4
slow recovery
4
recovery bluf
4
eb1 eal-bluf
4

Similar Publications

OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur.

View Article and Find Full Text PDF

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources.

View Article and Find Full Text PDF

Redox Properties of Flavin in BLUF and LOV Photoreceptor Proteins from Hybrid QM/MM Molecular Dynamics Simulation.

J Phys Chem B

April 2024

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Park 904, Amsterdam 1098 XH, The Netherlands.

Flavins play an important role in many oxidation and reduction processes in biological systems. For example, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are common cofactors found in enzymatic proteins that use the special redox properties of these flavin molecules for their catalytic or photoactive functions. The redox potential of the flavin is strongly affected by its (protein) environment; however, the underlying molecular interactions of this effect are still unknown.

View Article and Find Full Text PDF

Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain.

J Phys Chem B

March 2024

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps.

View Article and Find Full Text PDF

Origin of the multi-phasic quenching dynamics in the BLUF domains across the species.

Nat Commun

January 2024

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!