Legionella species are generally found in nature and in water resources, and they are gram negative bacilli that can cause pneumonia by being transmitted from water systems to humans via aerosol or aspiration. Legionnaires' disease caused by this agent continues to be a public health problem in cruise ships. In this study, it was aimed to determine the prevalence of the colonization of Legionella species by culture method and to determine the molecular characterization of the isolated Legionella in water samples taken from the water systems of the ships docking in Mersin International Port. A total of 158 cold water samples were taken from 18 ferry and/or cargo ships docking in Mersin International Port between December 2014 and June 2015. Fifty-four of the samples were obtained from tanks, 68 from taps and 36 from shower heads. All samples were centrifuged and inoculated from the pellet onto "Buffered Coal Yeast Extract" (BCYE) (Oxoid, CM0655, UK) agar medium supplemented with iron pyrophosphate, L-cysteine and α-ketoglutarate (Oxoid, SR0110, UK). The culture plates were incubated for 10-15 days in microaerophilic environment in a desiccator at 37°C. The suspicious colonies grown in cultures were serogrouped by latex agglutination test (Oxoid, DR0800M, UK) and fluorescent antibody method (m-Tech Monoclonal Technologies, Inc., USA). For the molecular analysis of Legionella species grown in culture, DNA isolation was made from Legionella colonies and then polymerase chain reaction amplification was performed using specific primer sequences targeting the rpoB gene region of the Legionella genome. Direct DNA sequencing of rpoB gene products was performed in the "ABI PRISM 3130XL Genetic Analyzer" (Applied Biosystems, USA). The DNA sequences were typed by BLAST analysis and the determined types, and NCBI (National Center for Biotechnology Information) reference Legionella sequences were phylogenetically compared with the Neighbor-Joining comparison method by using the Mega 7 program. Legionella spp. was isolated in 18 (11.4%) of 158 samples. Of these, four (7.4%, 4/54) were detected from the tank, 11 (16.2%, 11/68) from the tap and three (8.33%, 3/36) from the shower head. After the latex agglutination test performed from the growing bacterial colonies, five (27.8%) were serogrouped as Legionella spp., four (22.2%) as Legionella pneumophila sg 5, two (11.1%, each) as L.pneumophila sg 1,L.pneumophila sg 8 and Legionella bozemanii and one (5.6%) as L.pneumophila sg 3. Two (11.1%) of the isolates grown in culture could not be serogrouped. Molecular characterization of 12 Legionella isolates could be performed. One of them was serologically serogrouped as L.bozemanii, and it was found to be 99% similar to Legionella rubrilucens when compared with NCBI Legionella sequence data in the BLAST program. One isolate that could not be differentiated by serogrouping was identified as Legionella erytra in the BLAST program after DNA sequence analysis. The remaining 10 isolates (55.6%, n= 18) were confirmed as L.pneumophilia after the comparison with reference NCBI sequences. In this study, it was determined that 11.4% of the water samples collected from the water systems of the ships docking in Mersin International Port were contaminated with Legionella species. The detected Legionella species have an important potential source of infection for the captain, ship workers and passengers travelling on the ships. In this respect, this study reveals the necessity of establishing studies to improve the risk management of Legionella in the water systems of ships.

Download full-text PDF

Source
http://dx.doi.org/10.5578/mb.20229902DOI Listing

Publication Analysis

Top Keywords

water systems
20
legionella species
20
legionella
18
systems ships
16
water samples
12
ships docking
12
docking mersin
12
mersin international
12
international port
12
water
9

Similar Publications

Differences in the efficiency and mechanisms of different iron-based materials driving synchronous nitrogen and phosphorus removal.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:

Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.

View Article and Find Full Text PDF

Hotspots of nitrogen losses from anthropogenic sources in the Huang-Huai-Hai Basin, China.

Environ Pollut

December 2024

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China. Electronic address:

Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.

View Article and Find Full Text PDF

Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs.

Environ Pollut

December 2024

Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.

View Article and Find Full Text PDF

A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.

View Article and Find Full Text PDF

Sesamolin possesses limited aqueous solubility, a drawback for biological activity study in cancer cell models. This study aimed to enhance sesamolin's ability to fight cancer, as it is a bioactive compound with low water solubility found in sesame. We developed different Pickering emulsion delivery systems and tested their anticancer effects on various cancer cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!