AI Article Synopsis

  • Regeneration-competent species, like zebrafish, can reverse severe diseases by restoring damaged tissue, but the cellular mechanisms behind this are not well understood.
  • Using single-cell transcriptomics, researchers mapped how zebrafish regenerate β-cells during diabetes recovery, identifying two types of somatostatin-producing δ-cells and glucose-responsive islet cells.
  • The study found that β/δ hybrid cells play a crucial role in insulin expression during recovery, and manipulating a specific gene can enhance their formation, highlighting the potential for understanding diabetes resolution.

Article Abstract

Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo β-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both β- and δ1-cells. The transcriptomic analysis of β-cell regeneration reveals that β/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of β-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of β-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.199853DOI Listing

Publication Analysis

Top Keywords

β-cell regeneration
16
hybrid cells
16
novo β-cell
8
regeneration reveals
8
diabetes recovery
8
diabetes zebrafish
8
cells
6
β-cell
5
regeneration
5
hybrid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!