Fish Gelatin: Current Nutritional, Medicinal, Tissue Repair Applications, and as a Carrier of Drug Delivery.

Curr Pharm Des

Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.

Published: July 2022

Gelatin is obtained via partial denaturation of collagen and is extensively used in various industries. The majority of gelatin utilized globally is derived from a mammalian source. Several health and religious concerns associated with porcine/bovine gelatin have been reported. Therefore, gelatin from a marine source is widely being investigated for its efficiency and utilization in a variety of applications as a potential substitute for porcine/bovine gelatin. Although fish gelatin is less durable and possesses lower melting and gelling temperatures compared to mammal-derived gelatin, various modifications have been reported to promote its rheological and functional properties to be efficiently employed. The present review describes in detail the current innovative applications of fish gelatin involving the food industry, drug delivery, and possible therapeutic applications. Gelatin bioactive molecules may be utilized as carriers for drug delivery. Due to its versatility, gelatin can be used in different carrier systems, such as microparticles, nanoparticles, fibers, and hydrogels. The present review also provides a perspective on the other potential pharmaceutical applications of fish gelatin, such as tissue regeneration, antioxidant supplementation, and antihypertensive and anticancer treatments.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612828666220128103725DOI Listing

Publication Analysis

Top Keywords

fish gelatin
16
drug delivery
12
gelatin
11
porcine/bovine gelatin
8
applications fish
8
applications
5
fish
4
gelatin current
4
current nutritional
4
nutritional medicinal
4

Similar Publications

A Lateral Line Specific Mucin Involved in Cupula Growth and Vibration Detection in Zebrafish.

Int J Mol Sci

January 2025

Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China.

The lateral line system in fish is crucial for detecting water flow, which facilitates various behaviors such as prey detection, predator avoidance, and rheotaxis. The cupula, a gelatinous structure overlaying the hair cells in neuromasts, plays a key role in transmitting mechanical stimuli to hair cells. However, the molecular composition of the cupula matrix remains poorly understood.

View Article and Find Full Text PDF

Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).

View Article and Find Full Text PDF

The properties of biopolymer films prepared using Southern meagre fish () skin gelatin blends, both with and without clove bud extract (CE) at concentrations of 0.3% and 0.7%, were investigated.

View Article and Find Full Text PDF

Besides their nutritional role, proteins are recognized for their ability to regulate both short- and long-term energy homeostasis. However, studies investigating the effects of proteins based on their quality and origin remain limited and often lack comparability. Nonetheless, existing research consistently underscores the influence of proteins on food intake regulation.

View Article and Find Full Text PDF

3D-printed ultra-sensitive strain sensors using biogels prepared from fish gelatin and gellan gum.

Carbohydr Polym

March 2025

Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China. Electronic address:

The long-term sustainable development of flexible electronic devices is limited by a reliance on synthetic polymers that pose dangers for humans and potentially severe ecological problems, as well as a reliance on conventional processing methods. This work aims to exploit 3D printing to develop natural biogels composed of fish gelatin and high acyl gellan gum for use as flexible sensors. The electrical conductivity and mechanical strength were remarkably enhanced through the environmentally friendly enzyme (transglutaminase) cross-linking and non-toxic ethanol modification treatment, which allows the development of 3D printed sensors for temperature, strain, and stress sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!