For quick disinfection treatment, phototherapy, including photothermal therapy and photodynamic therapy, has emerged as a promising alternative to conventional methods. However, the bactericidal effect of phototherapy, which only works upon light, is short-lived. The remaining bacteria in situ may repopulate when the irradiation of light is withdrawn. To address this refractory concern, an antibacterial fibrous membrane consisting of electrospun poly (polycaprolactone) scaffolds and polydopamine (pDA) coated MXene/Ag PO bioheterojunctions (MX@AgP bio-HJs) is devised and developed. Upon near-infrared (NIR) illumination, the MX@AgP nanoparticle (NP) in nanofibrous electrospun membranes exert the excellent bactericidal effect of phototherapy and release Ag ions which stop the remaining bacteria from multiplying in the dark state. When removing NIR light, pDA in situ reduces Ag ions to Ag NPs to realize the self-rechargeability of Ag ions and provides enough Ag ions for the second phototherapy. In vivo results show that photoactivated nanofibrous membranes can re-shape an infected wound microenvironment to the regenerative microenvironment through killing bacteria, ceasing bleeding, increasing epithelialization, and collagen deposition on the wound bed, as well as promoting angiogenesis. As predicted, the proposal work offers potential prospects for nanofibrous membranes with NIR-assisted "self-rechargeable" antibacterial properties to treat bacteria-infected full-thickness wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202105988 | DOI Listing |
Sci Rep
December 2024
School of Biomedical Sciences, Suzhou Chien-shiung Institute of Technology, Suzhou, 215411, People's Republic of China.
Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
Nano Lett
December 2024
West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
Strategic integration of adhesive hydrogels with phototherapy-based antibacterial properties has been extensively leveraged in infected tissue repair. Nevertheless, the interference of bacterial heat shock proteins and antioxidant defense systems attenuates the bactericidal potency of phototherapy. To address this imposing predicament, a Trojan horse bioheterojunction (Th-bioHJ) incorporating liquid metal and copper sulfide is devised to confer an adhesive hydrogel with multimodal and comprehensive antibacterial properties for remedying infectious wounds.
View Article and Find Full Text PDFNano Lett
December 2024
Medical Innovation Technology Transformation Center, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China.
Melanoma, the most prevalent form of skin cancer, is primarily treated with surgical intervention. However, complete tumor cell removal is challenging, and surgical wounds are prone to infection, complicating treatment and increasing costs. The successful treatment of melanoma generally requires multifunctional agents that are coordinated in tumor therapy and wound healing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Advanced Materials Synthesis and Processing Technology, Wuhan University of Technology, Hubei Provincial Biomedical Materials and Engineering Research Center, Wuhan 430070, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!