This paper presents the characterization of municipal solid waste (MSW) randomly collected from two material recovery facilities in São Paulo city, before (input - recyclables) and after (output - rejects) the sorting processes. Geo-environmental and geotechnical tests were performed on shredded samples and a digestion method was applied to detect the metals As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations using an ICP OES. The objective was to assist future activities of integrated solid waste management and soil pollution. Results showed different particle sizes comparing the input (44.6%) and the output MSW (75.1%) passing through the 100-mm sieve. Organic matter and ash contents indicated the influence of inorganic carbon due to the plastics' presence, with values varying between 6 and 13%. The pH values obtained were neutral and the electrical conductivity of the MSW rejects suggested a higher amount of ions, with values above 1000 µS/cm. Metals analyses show that Cd, Cu, Ni, Pb, and Zn are present in high concentrations, depending on the types of the materials. Standard Proctor compaction curves yielded maximum dry unit weight varying from 6.6 to 10.0 kN/m and optimum moisture contents from 20 to 42%. Cohesion ranged from 1.3 to 31.3 kPa and friction angle from 3.2 to 42.9°. The results are comparable with those obtained for other countries using different MSW treatments and contribute to the data basis for MSW from the selective collection, aiming the integrated solid waste management, serving for other countries that adopt MSW sorting and recycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794613PMC
http://dx.doi.org/10.1007/s11356-021-18281-wDOI Listing

Publication Analysis

Top Keywords

solid waste
16
geo-environmental geotechnical
8
characterization municipal
8
municipal solid
8
selective collection
8
são paulo
8
paulo city
8
integrated solid
8
waste management
8
msw
6

Similar Publications

Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.

View Article and Find Full Text PDF

This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.

View Article and Find Full Text PDF

The carbon footprint and energy consumption of liver transplantation.

Front Transplant

January 2025

Department of Surgical, Medical, Biomolecular Pathology and Intensive Care, University of Pisa, Pisa, Italy.

Background And Aims: There is growing interest in the environmental impact of surgical procedures, yet more information is needed specifically regarding liver transplantation. This study aims to quantify the total greenhouse gas emissions, or carbon footprint, associated with adult whole-size liver transplantation from donors after brain death, including the relevant back-table graft preparation.

Methods: The carbon footprint was calculated retrospectively using a bottom-up approach.

View Article and Find Full Text PDF

The speciation and thermal transformation characteristics of fluorine and chlorine in industrial wastes.

Environ Technol

January 2025

China State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.

The study investigated the chlorine and fluorine contents in three types of industrial solid waste: textile, plastic, and paper waste, utilizing various analytical methods. Significant variations in the proportions of organic and inorganic chlorine were observed among the waste types. During heat treatment, the majority of chlorine converts to a volatile state, with fixed chlorine content showing a correlation with organic chlorine.

View Article and Find Full Text PDF

Basaltic glass was prepared via the solid-state melt method, using Ce to simulate tetravalent actinides. The structure, thermal stability and leaching characteristics of basaltic glass with different contents of CeO were investigated. The XRD/SEM-EDX/Raman results showed that the simulated waste loading of CeO in basaltic glass reached ~ 18 wt%, and CeO crystals precipitated when the CeO content reached 20 wt%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!