Complex epigenetic changes occur during plant reproduction. These regulations ensure the proper transmission of epigenetic information as well as allowing for zygotic totipotency. In Arabidopsis, the main DNA methyltransferase is called MET1 and is responsible for methylating cytosine in the CG context. The Arabidopsis genome encodes for three additional reproduction-specific homologs of MET1, namely MET2a, MET2b and MET3. In this paper, we show that the DNA methyltransferase MET3 is expressed in the seed endosperm and its expression is later restricted to the chalazal endosperm. MET3 is biallelically expressed in the endosperm but displays a paternal expression bias. We found that MET3 expression is regulated by the Polycomb complex proteins FIE and MSI1. Seed development is not impaired in met3 mutant, and we could not observe significant transcriptional changes in met3 mutant. MET3 might regulates gene expression in a Polycomb mutant background suggesting a further complexification of the interplay between H3K27me3 and DNA methylation in the seed endosperm. KEY MESSAGE: The DNA METHYLTRANSFERASE MET3 is controlled by Polycomb group complex during endosperm development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110472 | PMC |
http://dx.doi.org/10.1007/s00497-021-00436-x | DOI Listing |
J Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFGene
January 2025
Department of Biotechnology, Pondicherry Central University, Pondicherry 605014, India.
The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China. Electronic address:
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair.
View Article and Find Full Text PDFBackground: AML-M4Eo is a type of AML characterized by malignant proliferation of granulocyte and monocyte precursor cells accompanied by eosinophilia. Patients present as anemia, infection, bleeding, and tissue and organ infiltration. MICM classification makes the classification of AML more accurate and lays a foundation for the correct treatment and prognosis of AML.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!