A pump-free microfluidic device for fast magnetic labeling of ischemic stroke biomarkers.

Anal Bioanal Chem

INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n 4715-330, Braga, Portugal.

Published: March 2022

This research proposes a low-cost and simple operation microfluidic chip to enhance the magnetic labeling efficiency of two ischemic stroke biomarkers: cellular fibronectin (c-Fn) and matrix metallopeptidase 9 (MMP9). This fully portable and pump-free microfluidic chip is operated based on capillary attractions without any external power source and battery. It uses an integrated cellulose sponge to absorb the samples. At the same time, a magnetic field is aligned to hold the target labeled by the magnetic nanoparticles (MNPs) in the pre-concentrated chamber. By using this approach, the specific targets are labeled from the beginning of the sampling process without preliminary sample purification. The proposed study enhanced the labeling efficiency from 1 h to 15 min. The dynamic interactions occur in the serpentine channel, while the crescent formation of MNPs in the pre-concentrated chamber, acting as a magnetic filter, improves the biomarker-MNP interaction. The labeling optimization by the proposed device influences the dynamic range by optimizing the MNP ratio to fit the linear range across the clinical cutoff value. The limits of detection (LODs) of 2.8 ng/mL and 54.6 ng/mL of c-Fn measurement were achieved for undiluted and four times dilutions of MNP, respectively. While for MMP9, the LODs were 11.5 ng/mL for undiluted functionalized MNP and 132 ng/mL for four times dilutions of functionalized MNP. The results highlight the potential use of this device for clinical sample preparation and specific magnetic target labeling. When combined with a detection system, it could also be used as an integrated component of a point-of-care platform.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-022-03915-wDOI Listing

Publication Analysis

Top Keywords

pump-free microfluidic
8
magnetic labeling
8
ischemic stroke
8
stroke biomarkers
8
microfluidic chip
8
labeling efficiency
8
mnps pre-concentrated
8
pre-concentrated chamber
8
times dilutions
8
functionalized mnp
8

Similar Publications

Background: Cell concentration in body fluid is an important factor for clinical diagnosis. The traditional method involves clinicians manually counting cells under microscopes, which is labor-intensive. Automated cell concentration estimation can be achieved using flow cytometers; however, their high cost limits accessibility.

View Article and Find Full Text PDF

A stand-alone and point-of-care electrochemical immuno-device for Salmonella typhimurium testing.

Talanta

December 2024

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China. Electronic address:

The rapid development of accurate and point-of-care diagnostic tools for foodborne diseases has made a massive impact in global health. Salmonella typhimurium (S. typhimurium) exemplifies an enteric pathogen, being a gram-negative bacteria responsible for several gastrointestinal and systemic illnesses.

View Article and Find Full Text PDF

Droplet generation is crucial in various scientific and industrial fields, such as drug delivery, diagnostics, and inkjet printing. While microfluidic platforms enable precise droplet formation, traditional methods often require costly and complex setups, limiting their accessibility. This study introduces a simple, low-cost approach using an off-the-shelf unit and a 3D-printed reservoir.

View Article and Find Full Text PDF

Cortisol, known as the "stress hormone", is secreted by the adrenal cortex. Measuring cortisol levels in body fluids is essential for evaluating stress levels, adrenal function, hormone imbalance, and psychological well-being. Early diagnosis and management of related conditions depend on this measurement.

View Article and Find Full Text PDF

In this study, we present a pump-free SERS microfluidic chip capable of detecting liver cancer-related miR-21 and miR-155 concurrently with ultra-sensitivity and high efficiency. We employed a FeO@cDNA-AuNPs@Raman reporter@H composite structure and a recognition competition strategy. When the target miRNAs (miR-21 and miR-155) are present in the test liquid, they specifically compete with the nucleic acid complementary strand(H) of FeO@cDNA-AuNPs@Raman reporter@H, causing AuNPs to competitively detach from the surface of FeO, resulting in a decrease in the SERS signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!