Standard model species are commonly used in toxicity tests due to their biological and technical advantages but studying native species increases the specificity and relevance of results generated for the potential risk assessment to an ecosystem. Accounting for intraspecies variability and other factors, such as chemical and physical characterization of test medium, is necessary to develop a reproducible bioassay for toxicity testing with native species. In this study, larval stage I American lobster (Homarus americanus), a commercially important and native species of Atlantic Canada, was used as the test species. Toxicity tests were first conducted by exposing lobster larvae to a reference toxicant of copper sulphate (CuSO) and then to physically and chemically (using Corexit 9500A) dispersed oil (WAF and CEWAF, respectively). The effect on larval survival was estimated by calculating the 24-h median effect concentration (24-h EC50), and there was no difference between WAF or CEWAF exposure when the results are reported on a total petroleum hydrocarbon (TPH) basis. The 24-h EC50s ranged from 2.54 to 9.73 mg TPH/L when all trials (n = 19) are considered together. The HC5 (hazardous concentration for 5 per cent of the population) value was 2.52 mg TPH/L and similar to the EC50 value when all trials were pooled. To evaluate the reproducibility of the lobster toxicity tests, inter-trial variability was determined, and the resultant coefficients of variation (%CV) were compared to those reported for two standard test species, mysid shrimp (Americamysis bahia) and inland silverside (Menidia beryillina). This comparison showed that the %CV for the lobster toxicity tests were lower than those for the standard species tests indicating that the described larval lobster toxicity bioassay produces reliable and repeatable results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971184 | PMC |
http://dx.doi.org/10.1007/s00244-022-00912-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!