Photophysical Details and O-Sensing Analysis of a Eu(III) Complex in Polymer Composite Nanofibers Prepared by Electrospinning.

Front Chem

Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.

Published: January 2022

AI Article Synopsis

Article Abstract

An as-synthesized Eu(III) complex, denoted as Eu(N-DPNQ)(TTD), was prepared and characterized, and the antenna mechanism between these ligands and central metal emitter was studied. Here DPNQ means 10-ethyl-10H-indolo [2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline and TTD is 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione. We find that Eu(N-DPNQ)(TTD) emission intensity dependents on oxygen concentration, and O-sensing skill of Eu(N-DPNQ)(TTD) in polymer composite nanofibers of poly (vinylpyrrolidone) (PVP) prepared by electrospinning is investigated. Results reveal that the emission quenching of Eu(N-DPNQ)(TTD) is caused by the ground state (triplet) oxygen quenching on antenna ligands triplet state. The Eu(N-DPNQ)(TTD) doped composite nanofiber with a loading level of 6 wt% exhibits the best result with sensitivity of 2.43 and response time of 10 s, along with linear response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789007PMC
http://dx.doi.org/10.3389/fchem.2021.812461DOI Listing

Publication Analysis

Top Keywords

euiii complex
8
polymer composite
8
composite nanofibers
8
prepared electrospinning
8
eun-dpnqttd
5
photophysical details
4
details o-sensing
4
o-sensing analysis
4
analysis euiii
4
complex polymer
4

Similar Publications

N,O-Heterocyclic ligands such as 2,9-diamide-1,10-phenanthroline dicarboxamide (DAPhen) and bis-lactam-1,10-phenanthroline (BLPhen) exhibit excellent separation performance for Am(III) and Eu(III) in high-level liquid waste. However, DAPhen-based ligands show poor extraction capacity, and BLPhen ligands suffer from decomposition in acidic solutions, which hinders their application in practical separation processes. To develop ligands with superior performance, two new completely preorganized and highly stabilized bis-lactam-1,10-phenanthroline (BLPhen) ligands with varying alkyl chain lengths were synthesized, demonstrating exceptional extraction and separation of Am(III) from Eu(III) with maximum separation factors of 68 and 53, respectively.

View Article and Find Full Text PDF

The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis.

View Article and Find Full Text PDF

Tuning the Duplex Stability of DNA Oligonucleotides Containing Metal-Mediated Base Pairs of Imidazole-Derived Nucleobases.

Chemistry

December 2024

Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149, Münster, Germany.

Two artificial imidazole-derived nucleobases, Im (3H-imidazo[4,5-f]quinolin-5-ol) and Im (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions Co, Ni and Zn, as well as with the lanthanoid ions Eu and Sm, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.

View Article and Find Full Text PDF

The extraction and complexation of trivalent americium (Am) and lanthanides (Ln) using an asymmetric picolinic acid-derived tridentate N,O-hybrid ligand, 6-(dioctylcarbamoyl)picolinic acid (DOAPA), have been studied through both experimental and theoretical methods. DOAPA exhibits effective and fast extraction of Am(III) and Ln(III). The extraction is driven by favorable enthalpy change.

View Article and Find Full Text PDF

Hybrid N,O-donor ligands based on 1,10-phenanthroline are a promising class of compounds for processing high-level waste. Here, we synthesized novel phenanthroline-based diphosphonates containing electron-withdrawing fluorine atoms in alkyl substituents. We studied their extraction properties for Am(III) and, for the first time, for the entire series of lanthanides(III).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!