Recent studies showed that rapamycin, as a mammalian target of rapamycin (mTOR) inhibitor, could have beneficial therapeutic effects for the central nervous system (CNS) related diseases. However, the immunosuppressive effect of rapamycin as an adverse effect, the low water solubility, and the rapid in vivo degradation along with the blood-brain barrier-related challenges restricted the clinical use of this drug for brain diseases. To overcome these drawbacks, a transferrin (Tf) decorated nanostructured lipid carrier (NLC) containing rapamycin was designed and developed. Rapamycin-loaded cationic and bare NLCs were prepared using solvent diffusion and sonication method and well characterized. The optimum cationic NLCs were physically decorated with Tf. For study, the MTT assay and intracellular uptake of nanoparticles on U-87 MG glioblastoma cells were assessed. The animal biodistribution of nanoparticles was evaluated by fluorescent optical imaging. Finally, the effect of NLCs on the immune system was also studied. Spherical NLCs with small particle sizes ranging from 120 to 150 nm and high entrapment efficiency of more than 90%, showed ≥80% cell viability. More importantly, Tf-decorated NLCs in comparison with bare NLCs, showed a significantly higher cellular uptake (97% vs 60%) after 2 hours incubation and further an appropriate brain accumulation with lower uptake in untargeted tissue in mice. Surprisingly, rapamycin-loaded NLCs exhibited no immunosuppressive effect. Our findings proposed that the designed Tf-decorated NLCs could be considered as a safe and efficient carrier for targeted brain delivery of rapamycin which may have an important value in the clinic for the treatment of neurological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783081PMC
http://dx.doi.org/10.34172/bi.2021.23389DOI Listing

Publication Analysis

Top Keywords

delivery rapamycin
8
transferrin decorated
8
decorated nanostructured
8
nanostructured lipid
8
nlcs
8
bare nlcs
8
tf-decorated nlcs
8
rapamycin
6
brain
4
brain targeted
4

Similar Publications

A Novel Approach for In Vitro Testing and Hazard Evaluation of Nanoformulated RyR2-Targeting siRNA Drugs Using Human PBMCs.

Life (Basel)

January 2025

Laboratory of Toxicology and Risk Assessment, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy.

Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns-particularly those specific to this class of drugs-is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs.

View Article and Find Full Text PDF

Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.

View Article and Find Full Text PDF

Alopecia areata (AA) is a prevalent autoimmune condition that causes sudden hair loss and poses significant psychological challenges to affected individuals. Current treatments, including corticosteroids and Janus kinase inhibitors, fail to provide long-term efficacy due to adverse effects and relapse after cessation. This study introduces a nanoparticle (NP) system that codeliver diphenylcyclopropenone (DPCP) and rapamycin (RAPA) prodrugs to induce immune tolerance and promote hair regeneration.

View Article and Find Full Text PDF

Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it.

View Article and Find Full Text PDF

Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.

Theranostics

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!