A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detecting COVID-19 Pneumonia over Fuzzy Image Enhancement on Computed Tomography Images. | LitMetric

Detecting COVID-19 Pneumonia over Fuzzy Image Enhancement on Computed Tomography Images.

Comput Math Methods Med

College of Applied Medical Sciences, King Faisal University, Hofuf 31982, Saudi Arabia.

Published: February 2022

COVID-19 is the worst pandemic that has hit the globe in recent history, causing an increase in deaths. As a result of this pandemic, a number of research interests emerged in several fields such as medicine, health informatics, medical imaging, artificial intelligence and social sciences. Lung infection or pneumonia is the regular complication of COVID-19, and Reverse Transcription Polymerase Chain Reaction (RT-PCR) and computed tomography (CT) have played important roles to diagnose the disease. This research proposes an image enhancement method employing fuzzy expected value to improve the quality of the image for the detection of COVID-19 pneumonia. The principal objective of this research is to detect COVID-19 in patients using CT scan images collected from different sources, which include patients suffering from pneumonia and healthy people. The method is based on fuzzy histogram equalization and is organized with the improvement of the image contrast using fuzzy normalized histogram of the image. The effectiveness of the algorithm has been justified over several experiments on different features of CT images of lung for COVID-19 patients, like Ground-Glass Opacity (GGO), crazy paving, and consolidation. Experimental investigations indicate that among the 254 patients, 81.89% had features on both lungs; 9.5% on the left lung; and 10.24% on the right lung. The predominantly affected lobe was the right lower lobe (79.53%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789426PMC
http://dx.doi.org/10.1155/2022/1043299DOI Listing

Publication Analysis

Top Keywords

covid-19 pneumonia
8
image enhancement
8
computed tomography
8
covid-19 patients
8
image
5
covid-19
5
detecting covid-19
4
pneumonia
4
fuzzy
4
pneumonia fuzzy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!