Oscillatory neural activity during sleep, such as that in the delta and sigma bands, is important for motor learning consolidation. This activity is reduced with typical aging, and this reduction may contribute to aging-related declines in motor learning consolidation. Evidence suggests that brain regions involved in motor learning contribute to oscillatory neural activity during subsequent sleep. However, aging-related differences in regional contributions to sleep oscillatory activity following motor learning are unclear. To characterize these differences, we estimated the cortical sources of consolidation-related oscillatory activity using individual anatomical information in young and older adults during non-rapid eye movement sleep after motor learning and analyzed them in light of cortical thickness and pre-sleep functional brain activation. High-density electroencephalogram was recorded from young and older adults during a midday nap, following completion of a functional magnetic resonance imaged serial reaction time task as part of a larger experimental protocol. Sleep delta activity was reduced with age in a left-weighted motor cortical network, including premotor cortex, primary motor cortex, supplementary motor area, and pre-supplementary motor area, as well as non-motor regions in parietal, temporal, occipital, and cingulate cortices. Sleep theta activity was reduced with age in a similar left-weighted motor network, and in non-motor prefrontal and middle cingulate regions. Sleep sigma activity was reduced with age in left primary motor cortex, in a non-motor right-weighted prefrontal-temporal network, and in cingulate regions. Cortical thinning mediated aging-related sigma reductions in lateral orbitofrontal cortex and frontal pole, and partially mediated delta reductions in parahippocampal, fusiform, and lingual gyri. Putamen, caudate, and inferior parietal cortex activation prior to sleep predicted frontal and motor cortical contributions to sleep delta and theta activity in an age-moderated fashion, reflecting negative relationships in young adults and positive or absent relationships in older adults. Overall, these results support the local sleep hypothesis that brain regions active during learning contribute to consolidation-related neural activity during subsequent sleep and demonstrate that sleep oscillatory activity in these regions is reduced with aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786737PMC
http://dx.doi.org/10.3389/fnagi.2021.787654DOI Listing

Publication Analysis

Top Keywords

motor learning
24
neural activity
16
activity reduced
16
sleep
13
activity
13
motor
13
sleep oscillatory
12
oscillatory neural
12
sleep delta
12
oscillatory activity
12

Similar Publications

Systematic Review of EEG-Based Imagined Speech Classification Methods.

Sensors (Basel)

December 2024

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.

View Article and Find Full Text PDF

One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.

View Article and Find Full Text PDF

Mobility tasks like the Timed Up and Go test (TUG), cognitive TUG (cogTUG), and walking with turns provide insights into the impact of Parkinson's disease (PD) on motor control, balance, and cognitive function. We assess the test-retest reliability of these tasks in 262 PD participants and 50 controls by evaluating machine learning models based on wearable-sensor-derived measures and statistical metrics. This evaluation examines total duration, subtask duration, and other quantitative measures across two trials.

View Article and Find Full Text PDF

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!