The rapid pace of urbanization makes it imperative that we better understand the influence of climate forcing on urban malaria transmission. Despite extensive study of temperature effects in vector-borne infections in general, consideration of relative humidity remains limited. With process-based dynamical models informed by almost two decades of monthly surveillance data, we address the role of relative humidity in the interannual variability of epidemic malaria in two semi-arid cities of India. We show a strong and significant effect of humidity during the pre-transmission season on malaria burden in coastal Surat and more arid inland Ahmedabad. Simulations of the climate-driven transmission model with the MLE (Maximum Likelihood Estimates) of the parameters retrospectively capture the observed variability of disease incidence, and also prospectively predict that of 'out-of-fit' cases in more recent years, with high accuracy. Our findings indicate that relative humidity is a critical factor in the spread of urban malaria and potentially other vector-borne epidemics, and that climate change and lack of hydrological planning in cities might jeopardize malaria elimination efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795427PMC
http://dx.doi.org/10.1038/s41467-022-28145-7DOI Listing

Publication Analysis

Top Keywords

relative humidity
16
urban malaria
12
role relative
8
humidity interannual
8
interannual variability
8
malaria
6
humidity
5
neglected role
4
relative
4
variability urban
4

Similar Publications

Goji berry (Lycium barbarum L.) is a fruit with high nutritional and medicinal value, widely cultivated in northwest China (Wang et al. 2023).

View Article and Find Full Text PDF

Laboratory-scale spray drying can be a useful tool in developing new dry powder formulations for the delivery of biologics such as therapeutic proteins or vaccines. Low-temperature drying is often used in these processes to prevent the exposure of biologics to harsh conditions that could potentially lead to degradation or instability of the final product. However, low-temperature drying on small-scale equipment can result in very low production rates that may not be practical for generating sufficient material for studies requiring larger sample quantities, such as key preclinical or toxicology studies.

View Article and Find Full Text PDF

Diurnal variations of biogenic volatile organic compounds and their role in secondary pollutant formation in the Huai Hong Khrai subtropical forest, Thailand.

Environ Pollut

March 2025

National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, Thailand; Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, Thailand. Electronic address:

Understanding the emissions and atmospheric impact of biogenic volatile organic compounds (BVOCs) in subtropical forests remains limited despite their role in secondary pollutant formation. This study presents the first comprehensive BVOC dataset from the Huai Hong Khrai subtropical forest, Northern Thailand, during the dry season (March 4-9, 2024). Using thermal desorption gas chromatography-mass spectrometry (TD-GC-MS), we identified 45 BVOCs, dominated by monoterpenes, sesquiterpenes, and oxygenated derivatives.

View Article and Find Full Text PDF

The efficient removal of CO from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO)·HO (TriHCO).

View Article and Find Full Text PDF

The transportation and transformation of biogenic isoprene are vital for the organic carbon cycle in the troposphere. As a typical mineral with high oxidation potential, Fe-substituted cryptomelane oxidizes the surface monolayer of isoprene into formic and acetic acids, and simultaneously, the Mn ions in the structure are reduced to Mn and Mn. The flow of HO in isoprene decreases the adsorption and oxidation of isoprene significantly, even at low relative humidity (10%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!