Background: Rosette leaf trichomes of Arabidopsis thaliana have been broadly used to study cell development, cell differentiation and, more recently, cell wall biogenesis. However, trichome-specific biochemical or -omics analyses require a proper separation of trichomes from residual plant tissue. Thus, different strategies were proposed in the past for trichome isolation, which mostly rely on harsh conditions and suffer from low yield, thereby limiting the spectrum of downstream analyses.
Results: To take trichome-leaf separation to the next level, we revised a previously proposed method for isolating A. thaliana trichomes by optimizing the mechanical and biochemical specifications for trichome release. We additionally introduced a density gradient centrifugation step to remove residual plant debris. We found that prolonged, yet mild seedling agitation increases the overall trichome yield by more than 60% compared to the original protocol. We noticed that subsequent density gradient centrifugation further visually enhances trichome purity, which may be advantageous for downstream analyses. Gene expression analysis by quantitative reverse transcriptase-polymerase chain reaction validated a substantial enrichment upon purification of trichomes by density gradient centrifugation. Histochemical and biochemical investigation of trichome cell wall composition indicated that unlike the original protocol gentle agitation during trichome release largely preserves trichome integrity. We used enriched and density gradient-purified trichomes for proteomic analysis in comparison to trichome-depleted leaf samples and present a comprehensive reference data set of trichome-resident and -enriched proteins. Collectively we identified 223 proteins that are highly enriched in trichomes as compared to trichome-depleted leaves. We further demonstrate that the procedure can be applied to retrieve diverse glandular and non-glandular trichome types from other plant species.
Conclusions: We provide an advanced method for the isolation of A. thaliana leaf trichomes that outcompetes previous procedures regarding yield and purity. Due to the large amount of high-quality trichomes our method enabled profound insights into the so far largely unexplored A. thaliana trichome proteome. We anticipate that our protocol will be of use for a variety of downstream analyses, which are expected to shed further light on the biology of leaf trichomes in A. thaliana and possibly other plant species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796501 | PMC |
http://dx.doi.org/10.1186/s13007-021-00836-0 | DOI Listing |
Plants (Basel)
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.
Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion.
View Article and Find Full Text PDFProtoplasma
January 2025
Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
Previously, it was found that four types of glandular trichomes (GTs) are developed on the surface of all aerial organs in Doronicum species. A detailed study of leaves had shown that only two types of GTs form in them. Nothing was known about any differences of GTs on vegetative and reproductive organs.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czechia.
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions.
View Article and Find Full Text PDFPlant Sci
January 2025
Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:
Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexe consists of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!