Purpose: This study aims to evaluate the antibacterial properties of 304 Cu-bearing stainless steel (SS) with different Cu contents (0, 2.5, 4.5 wt.%) against oral biofilms of Streptococcus mutans (), (), and their mixture.
Methods: Bacterial biofilms on the surface of 304-Cu SS were characterized by plate counting, 4', 6-diamidino-2-phenylindole (DAPI) staining with aid of sanning electron microscopy (SEM) and 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT). In addition, the inhibition zone method was also employed to evaluate the antibacterial properties of 304-Cu SS. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to assess the cytotoxicity and apoptosis rate of 304-Cu SS, respectively.
Results: 304-4.5Cu SS could effectively inhibit the attachment, formation, activity, and metabolism of bacterial biofilm, possessing the best antibacterial properties exceeding 99.9% of antibacterial rate against , , and their mixture. The diameters of inhibition zones to and on the surface of 304-4.5Cu SS were 21.7 and 14.7 mm, respectively. The results of cell experiments in vitro showed that both 304-2.5Cu SS and 304-4.5Cu SS had no evident cytotoxicity with an identical grade 1. The apoptosis rate exhibited a gradually increased tendency with increase of the Cu content in 304 SS.
Conclusions: 304-4.5Cu SS without cytotoxic effect on NIH3T3 cells has obvious antibacterial activity against , and their mixture.
Clinical Significance: The Cu-bearing stainless steel provides a new solution to be used as oral orthodontic devices for inhibiting oral microflora imbalance and enamel demineralization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/22808000211065259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!