Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate theoretically the possibility of spinodal de-wetting in heterostructures made of light-atom liquids (hydrogen, helium, and nitrogen) deposited on suspended graphene. Extending our theory of film growth on two-dimensional (2D) materials to include analysis of surface instabilities via the hydrodynamic Cahn-Hilliard-type equation, we characterize in detail the spatial and temporal scales of the resulting spinodal de-wetting patterns. Both linear stability analysis and direct numerical simulations of the surface hydrodynamics show micron-sized (generally material dependent) patterns of 'dry' regions. The physical reason for the development of such instabilities on graphene can be traced back to the inherently weak van der Waals interactions between atomically thin materials and atoms in the liquid. Thus 2D materials could represent a new theoretical and technological platform for studies of spinodal de-wetting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac4f7e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!