Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently, the market demand of the non-animal-derived cholesterol is increasing. A novel synthetic route of producing cholesterol was developed through multiple reactions from plant-sourced and commercially available bisnoralcohol (BA). The key reaction conditions, including solvents, reaction temperatures, bases and reducing agents of the route were investigated and optimized. In this straightforward synthetic pathway of cholesterol, most of the reaction steps possess high conversions with average yields of 94%, and the overall yield is up to 74% (5 steps) from the BA. The epicholesterol and were also synthesized. This promising route offers economical and efficient strategies for potential large-scale production of plant-derived cholesterol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2022.108967 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!