Microbial fuel cell (MFC) is a green technology and does not harm the environment. It can be used for wastewater treatment, hydrogen production and power generation. There are lot of avenues need to be investigated to increase the efficiency of MFC and in order to make it acceptable publicly. Efficiency of MFC depends on many factors. In this study, the influence of anode materials (Fe, Al and Zn), their sizes (12, 16 and 20 cm) and shapes (square, rectangular and circular) were investigated on MFC efficiency. Dual chamber MFC setup was prepared in which Rhodobacter capsulatus was used as biocatalytic agent. Results revealed that Zn anode gave the highest voltage of 1.57 V with corresponding 0.23 A of current. Size of 20 cm of anode gave maximum voltage of 1.66 V with corresponding value of 0.08 A current, while anode size of 16 cm gave maximum current of 0.75 A with corresponding voltage of 1.65 V. Regarding their studied shapes, circular shape of anode gave the highest voltages of 1.70 V. Salt bridge played an important role in internal resistance of the fuel cell. The results were checked by changing the diameter and length of the salt bridge. The best results were noticed with 16 cm circular Zn anode and Fe as cathode. Salt bridge with 7.5 cm length gave the highest voltage of 1.65 V, while 4 gauge diameter salt bridge gave the highest current of 0.85 A.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.112781DOI Listing

Publication Analysis

Top Keywords

salt bridge
20
fuel cell
12
wastewater treatment
8
microbial fuel
8
efficiency mfc
8
anode highest
8
highest voltage
8
voltage 165 v
8
anode
7
salt
5

Similar Publications

Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.

View Article and Find Full Text PDF

This study investigates the efficacy of polyacrylamide-based polymers, specifically hydrolysed polyacrylamide (HPAM), in reducing solids production within carbonate reservoirs. Building on our earlier simulation approach, molecular simulations were conducted to examine how these polymers adsorb onto calcite, the main mineral found in carbonate formations. The adsorption process was affected by several factors, including polymer molecular weight, charge density, temperature, and salinity.

View Article and Find Full Text PDF

Molecular Docking Studies and In Vitro Activity of Pancreatic Lipase Inhibitors from Yak Milk Cheese.

Int J Mol Sci

January 2025

Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.

Pancreatic lipase serves as a primary trigger for hyperlipidemia and is also a crucial target in the inhibition of hypercholesterolemia. By synthesizing anti-hypercholesterolemic drugs such as atorvastatin, which are used to treat hypercholesterolemia, there were some side effects associated with the long-term use of statins. Based on this idea, in the present study, we identified peptides that inhibited PL by virtual screening and in vitro activity assays.

View Article and Find Full Text PDF

Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4 of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4 in the R219C VUS.

View Article and Find Full Text PDF

Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study.

Int J Mol Sci

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China.

The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!