This study presents the effectiveness of a combined silver carboxylate (AgCar) and chlorohexidine gluconate (AgCar:CHG) chemistry assessed against two commonly encountered nosocomial pathogens, Methicillin-resistant (MRSA) and , within the context of surgical antisepsis and wound care. Through an Institutional Review Board- and Institutional Animal Care and Use Committee (IACUC)-approved protocol, AgCar:CHG was applied to live Yucatan porcine skin and visualized by fast red and green staining to assess level of skin penetration. Dose response curves for and MRSA were generated to determine the optimal therapeutic ratio of AgCar to CHG. Coatings were applied to two different clinically available sutures and antimicrobial efficacy was evaluated at 24-hour intervals using Kirby-Bauer (KB) assays. Graphite furnace atomic absorption spectroscopy was used to measure AgCar elution from sutures over time. Synergistic application of AgCar:CHG demonstrated deep pilosebaceous gland penetration on Yucatan pig skin. The therapeutic concentration range of AgCar was determined to be between 120 × -150 × and 30 × -60 × dopage for MRSA and , respectively. A 1:1 therapeutic ratio of AgCar to CHG was found to have 100% bactericidal activity against both pathogens. Sutures coated with AgCar:CHG showed sustained antimicrobial activity against MRSA and , and were significantly more efficacious than antimicrobial sutures over the three- to four-day period (p < 0.01). This AgCar:CHG chemistry demonstrates deep skin penetration, extended elution, and broad-spectrum antimicrobial activity compared with commercially available options. This chemistry shows promise as an additional tool for the prophylaxis of surgical site infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/sur.2021.237 | DOI Listing |
RSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.
Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.
View Article and Find Full Text PDFSmall Methods
January 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.
The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!