Efficient Gamma-Retroviral Transduction of Primary Human Skin Cells Using the EF-c Peptide as a Transduction Enhancer.

Curr Protoc

Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX et Département de chirurgie, Faculté de médecine, Université Laval, Québec City, Quebec, Canada.

Published: January 2022

Efficient gene transfer into cultured fibroblasts and keratinocytes during retroviral transduction is a critical step toward the treatment of genodermatoses such as epidermolysis bullosa. However, achieving high transduction rates is still a difficult task, particularly for the insertion of large coding sequences for which high viral titers cannot always be obtained. Multiple polycationic molecules, such as polybrene, which has been used in several clinical trials, have the ability to boost ex vivo retroviral gene transfer. However, the use of polybrene has been associated with a reduction of the proliferation and growth potential of human keratinocytes in culture. We developed a method for the efficient retroviral transduction of primary fibroblasts and keratinocytes using EF-c, a polycationic nanofibril-forming peptide. In comparison with polybrene, we found that the retroviral transduction efficiency with EF-c was increased 2.5- to 3.2-fold for fibroblasts, but not for keratinocytes. Moreover, the use of EF-c did not affect fibroblast proliferation and keratinocyte stem cell content, whereas polybrene induced a decrease in both. This method could have a positive impact on the development of ex vivo gene correction of genodermatoses, allowing for more efficient gene transfer into primary skin cells with little to no effect on proliferation and stem cell content. © 2022 Wiley Periodicals LLC. Basic Protocol: Fibroblast and keratinocyte transduction Support Protocol: Assessment of transduction efficiency through flow cytometry analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpz1.353DOI Listing

Publication Analysis

Top Keywords

gene transfer
12
fibroblasts keratinocytes
12
retroviral transduction
12
transduction
8
transduction primary
8
skin cells
8
efficient gene
8
keratinocytes ef-c
8
transduction efficiency
8
stem cell
8

Similar Publications

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Emergence of a novel group B streptococcus CC61 clade associated with human infections in southern China.

J Infect

January 2025

National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, PR China. Electronic address:

Objectives: Emerging human pathogens of animal origin have become an increasing public health concern in recent years. The aim of this study was to investigate the transmission of group B streptococcus (GBS) clonal complex (CC) 61 strains in the southern Chinese population and analyze their genetic characteristics.

Methods: Whole-genome sequencing was performed on 693 clinical isolates of GBS collected from southern China between 2016 and 2021, and the prevalence of human CC61 isolates was investigated by genomic epidemiology.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!