A reliable method for preparing a conformal amorphous carbon (a-C) layer with a thickness of 1-nm-level, is tested as a possible Cu diffusion barrier layer for next-generation ultrahigh-density semiconductor device miniaturization. A polystyrene brush of uniform thickness is grafted onto 4-inch SiO /Si wafer substrates with "self-limiting" chemistry favoring such a uniform layer. UV crosslinking and subsequent carbonization transforms this polymer film into an ultrathin a-C layer without pinholes or hillocks. The uniform coating of nonplanar regions or surfaces is also possible. The Cu diffusion "blocking ability" is evaluated by time-dependent dielectric breakdown (TDDB) tests using a metal-oxide-semiconductor (MOS) capacitor structure. A 0.82 nm-thick a-C barrier gives TDDB lifetimes 3.3× longer than that obtained using the conventional 1.0 nm-thick TaN diffusion barrier. In addition, this exceptionally uniform ultrathin polymer and a-C film layers hold promise for selective ion permeable membranes, electrically and thermally insulating films in electronics, slits of angstrom-scale thickness, and, when appropriately functionalized, as a robust ultrathin coating with many other potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202110454DOI Listing

Publication Analysis

Top Keywords

amorphous carbon
8
a-c layer
8
diffusion barrier
8
large-area uniform
4
uniform 1-nm-level
4
1-nm-level amorphous
4
carbon layers
4
layers conformal
4
conformal polymer
4
polymer brushes
4

Similar Publications

The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.

View Article and Find Full Text PDF

Potential of CoMnO spinel as soot oxidation catalyst and its kinetics thereof.

Sci Rep

January 2025

Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India.

Efficient catalysts for soot oxidation are critical for mitigating environmental pollution. In this study, CoMnO spinel catalysts were synthesised using reverse co-precipitation and co-precipitation methods to evaluate their performance in soot oxidation and kinetic behaviour. All samples exhibited a tetragonal phase (XRD) and spherical morphology with rough surfaces (SEM).

View Article and Find Full Text PDF

Bismuth oxide nanosheets were synthesized through the exfoliation of layered compounds without any organic exfoliation agents. The layered compound BiSrCaFeO, comprising Bi-O layers and Sr-Ca-Fe-O layers, was synthesized as the starting material. The Sr-Ca-Fe-O layers were selectively dissolved by shaking the compound in 0.

View Article and Find Full Text PDF

Mercury Adsorption by Ca-Based Shell-Type Polymers Synthesized by Self-Assembly Mineralization.

Polymers (Basel)

December 2024

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.

View Article and Find Full Text PDF

Construction of a Molecular Dynamics Model of N-A-S-H Geopolymer Based on XRD Analysis.

Materials (Basel)

December 2024

College of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China.

A geopolymer is a low-carbon cementitious material, and its condensation process is akin to the formation of inorganic polymers. The crystal phase of synthesized geopolymers was identified using XRD; the scattering peaks of amorphous phases were analyzed, and the zeolite minerals akin to different n(Si)/n(Al) geopolymers were determined. Based on this, a model structure of N-A-S-H geopolymers was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!